Zobrazit minimální záznam

dc.contributor.authorČermák, Martin
dc.contributor.authorHecht, Frederic
dc.contributor.authorTang, Zuqi
dc.contributor.authorVohralík, Martin
dc.date.accessioned2018-04-05T11:17:31Z
dc.date.available2018-04-05T11:17:31Z
dc.date.issued2018
dc.identifier.citationNumerische Mathematik. 2018, vol. 138, issue 4, p. 1027-1065.cs
dc.identifier.issn0029-599X
dc.identifier.issn0945-3245
dc.identifier.urihttp://hdl.handle.net/10084/125649
dc.description.abstractIn this paper, we develop adaptive inexact versions of iterative algorithms applied to finite element discretizations of the linear Stokes problem. We base our developments on an equilibrated stress a posteriori error estimate distinguishing the different error components, namely the discretization error component, the (inner) algebraic solver error component, and possibly the outer algebraic solver error component for algorithms of the Uzawa type. We prove that our estimate gives a guaranteed upper bound on the total error, as well as a polynomial-degree-robust local efficiency, and this on each step of the employed iterative algorithm. Our adaptive algorithms stop the iterations when the corresponding error components do not have a significant influence on the total error. The developed framework covers all standard conforming and conforming stabilized finite element methods on simplicial and rectangular parallelepipeds meshes in two or three space dimensions and an arbitrary algebraic solver. Implementation into the FreeFem++ programming language is invoked and numerical examples showcase the performance of our a posteriori estimates and of the proposed adaptive strategies. As example, we choose here the unpreconditioned and preconditioned Uzawa algorithm and the preconditioned minimum residual algorithm, in combination with the Taylor-Hood discretization.cs
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofseriesNumerische Mathematikcs
dc.relation.urihttps://doi.org/10.1007/s00211-017-0925-3cs
dc.rights© Springer-Verlag GmbH Deutschland 2017cs
dc.subjectStokes problemcs
dc.subjectconforming finite element methodcs
dc.subjectadaptive inexact iterative algorithmcs
dc.subjectouter-inner iterationcs
dc.subjectUzawa methodcs
dc.subjectMinRescs
dc.subjecta posteriori error estimatecs
dc.subjectguaranteed boundcs
dc.subjectefficiencycs
dc.subjectpolynomial-degree-robustnesscs
dc.subjectinterplay between error componentscs
dc.subjectadaptive stopping criterioncs
dc.titleAdaptive inexact iterative algorithms based on polynomial-degree-robust a posteriori estimates for the Stokes problemcs
dc.typearticlecs
dc.identifier.doi10.1007/s00211-017-0925-3
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume138cs
dc.description.issue4cs
dc.description.lastpage1065cs
dc.description.firstpage1027cs
dc.identifier.wos000428049800008


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam