Zobrazit minimální záznam

dc.contributor.authorLe, Tuong
dc.contributor.authorNguyen, Anh
dc.contributor.authorHuynh, Bao
dc.contributor.authorVo, Bay
dc.contributor.authorPedrycz, Witold
dc.date.accessioned2018-04-23T11:39:39Z
dc.date.available2018-04-23T11:39:39Z
dc.date.issued2018
dc.identifier.citationApplied Intelligence. 2018, vol. 48, issue 5, p. 1327-1343.cs
dc.identifier.issn0924-669X
dc.identifier.issn1573-7497
dc.identifier.urihttp://hdl.handle.net/10084/126358
dc.description.abstractData mining has become increasingly important in the Internet era. The problem of mining inter-sequence pattern is a sub-task in data mining with several algorithms in the recent years. However, these algorithms only focus on the transitional problem of mining frequent inter-sequence patterns and most frequent inter-sequence patterns are either redundant or insignificant. As such, it can confuse end users during decision-making and can require too much system resources. This led to the problem of mining inter-sequence patterns with item constraints, which addressed the problem when end-users only concerned the patterns contained a number of specific items. In this paper, we propose two novel algorithms for it. First is the ISP-IC (Inter-Sequence Pattern with Item Constraint mining) algorithm based on a theorem that quickly determines whether an inter-sequence pattern satisfies the constraints. Then, we propose a way to improve the strategy of ISP-IC, which is then applied to the ISP-IC algorithm to enhance the performance of the process. Finally, pi ISP-IC, a parallel version of ISP-IC, will be presented. Experimental results show that pi ISP-IC algorithm outperforms the post-processing of the-state-of-the-art method for mining inter-sequence patterns (EISP-Miner), ISP-IC, and ISP-IC algorithms in most of the cases.cs
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofseriesApplied Intelligencecs
dc.relation.urihttps://doi.org/10.1007/s10489-017-1123-9cs
dc.rights© Springer Science+Business Media, LLC, part of Springer Nature 2018cs
dc.subjectdata miningcs
dc.subjectpattern miningcs
dc.subjectinter-sequence pattern miningcs
dc.subjectconstraint miningcs
dc.subjectparallel miningcs
dc.titleMining constrained inter-sequence patterns: a novel approach to cope with item constraintscs
dc.typearticlecs
dc.identifier.doi10.1007/s10489-017-1123-9
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume48cs
dc.description.issue5cs
dc.description.lastpage1343cs
dc.description.firstpage1327cs
dc.identifier.wos000429401100018


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam