Zobrazit minimální záznam

dc.contributor.authorHaslinger, Jaroslav
dc.contributor.authorKučera, Radek
dc.contributor.authorŠátek, Václav
dc.contributor.authorSassi, Taoufik
dc.date.accessioned2018-05-02T12:14:18Z
dc.date.available2018-05-02T12:14:18Z
dc.date.issued2018
dc.identifier.citationMathematics and Mechanics of Solids. 2018, vol. 23, issue 3, p. 294-307.cs
dc.identifier.issn1081-2865
dc.identifier.issn1741-3028
dc.identifier.urihttp://hdl.handle.net/10084/126647
dc.description.abstractThe paper analyzes the Stokes system with threshold slip boundary conditions of Navier type. Based on the fixed-point formulation we prove the existence of a solution for a class of solution-dependent slip functions g satisfying an appropriate growth condition and its uniqueness provided that g is one-sided Lipschitz continuous. Further we study under which conditions the respective fixed-point mapping is contractive. To discretize the problem we use P1-bubble/P1 elements. Properties of discrete models in dependence on the discretization parameter are analysed and convergence results are established. In the second part of the paper we briefly describe the duality approach used in computations and present results of a model example.cs
dc.language.isoencs
dc.publisherSagecs
dc.relation.ispartofseriesMathematics and Mechanics of Solidscs
dc.relation.urihttps://doi.org/10.1177/1081286517716222cs
dc.rights© 2018, © SAGE Publicationscs
dc.subjectStokes systemcs
dc.subjectthreshold slip boundary conditionscs
dc.subjectsolution dependent slip functioncs
dc.titleStokes system with solution-dependent threshold slip boundary conditions: Analysis, approximation and implementationcs
dc.typearticlecs
dc.identifier.doi10.1177/1081286517716222
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume23cs
dc.description.issue3cs
dc.description.lastpage307cs
dc.description.firstpage294cs
dc.identifier.wos000429895300004


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam