dc.contributor.author | Pyszko, René | |
dc.contributor.author | Franěk, Zdeněk | |
dc.contributor.author | Příhoda, Miroslav | |
dc.contributor.author | Velička, Marek | |
dc.contributor.author | Sikora, Kamil | |
dc.date.accessioned | 2018-05-04T09:26:54Z | |
dc.date.available | 2018-05-04T09:26:54Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Materiali in Tehnologije. 2018, vol. 52, no. 2, p. 111-117. | cs |
dc.identifier.issn | 1580-2949 | |
dc.identifier.issn | 1580-3414 | |
dc.identifier.uri | http://hdl.handle.net/10084/126689 | |
dc.description.abstract | Continuous casting comprises thermal, mechanical and chemical processes running in a complex system that contains a number of elements, such as a solidifying steel strand, a mould with an oscillation mechanism, a withdrawal mechanism, a water cooling sub-system with nozzles, several control sub-systems, etc. An external observer might see the process as robust and stable, but in reality there are fluctuations in the internal thermal and mechanical quantities, reflected in the structure and quality of the product. The research on unsteady behaviour of the quantities such as a solidifying strand temperature field, solid shell thickness and metallurgical length was conducted using an industrial diagnostic system DGS complemented with special measurement equipment and a thermal numerical model. Selected results of the monitoring and simulation of the non-standard process states are shown and analysed in the paper. Methods for determining the boundary conditions for the numerical model are also presented. The effect of the Leidenfrost phenomenon on the heat-transfer coefficient during water cooling by nozzles is also discussed. Since the determination of precise and immediate boundary conditions has technical limits, the model provides only smoothed values in time and space. As knowledge of the instantaneous state of the fluctuating process is a prerequisite for achieving quality and defect-free production, it is appropriate to complement the thermal numerical model by on-line monitoring of the machine's internal state. The results of the simulations are closely linked to the real process data. | cs |
dc.format.extent | 1856834 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | cs |
dc.publisher | Inštitut za kovinske materiale in tehnologije | cs |
dc.relation.ispartofseries | Materiali in Tehnologije | cs |
dc.relation.uri | https://doi.org/10.17222/mit.2016.235 | cs |
dc.rights | © MATERIALI IN TEHNOLOGIJE | cs |
dc.subject | continuous casting | cs |
dc.subject | monitoring | cs |
dc.subject | on-line simulation | cs |
dc.subject | boundary conditions | cs |
dc.title | Monitoring and simulation of the unsteady states in continuous casting | cs |
dc.title.alternative | Opazovanje in simulacija nestabilnih pogojev med kontinuirnim litjem | cs |
dc.type | article | cs |
dc.description.abstract-en | Kontinuirno litje obsega termične, mehanske in kemične procese, ki tečejo v kompleksnem sistemu, ki vsebuje vrsto elementov,
kot so: strjujoča se jeklena žila (gredica), kokila z oscilacijskim mehanizmom, izvlečni mehanizem, vodno hlajenje s podsistemom
hladilnih šob, več kontrolnih podsistemov itd. Zunanji opazovalec lahko vidi proces kot robusten in stabilen, toda v
resnici imamo vrsto fluktuacij (nihanj) internih termičnih in mehanskih veličin in kakovosti produkta (nastajajoče konti lite
gredice). Raziskave (časovno) nestabilnega obnašanja veličin, kot so: temperaturno polje strjujoče se konti gredice, debelina
trdne skorje in metalurška dolžina, so avtorji prispevka izvajali z industrijskim diagnostičnim sistemom (DGS), dopolnjenim s
specialno merilno opremo in termičnim numeričnim modelom. V članku avtorji predstavljajo izbrane rezultate analiz,
opazovanja in simulacije nestandardni procesnih stanj. Prav tako predstavljajo metode določevanja robnih pogojev za numerični
model. Diskusija obsega tudi t.i. Leidenfrostov fenomen in njegov vpliv na koeficient prenosa toplote med vodnim hlajenjem s
šobami. Za natančno določitev vsakokratnih robnih pogojev obstajajo tehnične omejitve. Zato so v postavljenem modelu
uporabljene le zglajene vrednosti v realnem času in prostoru. Poznavanje trenutnega stanja ves čas spreminjajočega stanja, je
predpogoj za doseganje kvalitetne proizvodnje brez napak. Zato je primerno uporabljati termični numerični model s tekočim
(on-line) oz. neposrednim spremljanjem internega stanja na konti livni napravi. Predstavljeni rezultati so tesno povezani z
realnimi procesnimi podatki. | cs |
dc.identifier.doi | 10.17222/mit.2016.235 | |
dc.rights.access | openAccess | cs |
dc.type.version | publishedVersion | cs |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 52 | cs |
dc.description.issue | 2 | cs |
dc.description.lastpage | 117 | cs |
dc.description.firstpage | 111 | cs |
dc.identifier.wos | 000430301300002 | |