Show simple item record

dc.contributor.authorRahnama, Amir Hossein Akhavan
dc.contributor.authorToloo, Mehdi
dc.contributor.authorZaidenberg, Nezer Jacob
dc.date.accessioned2018-05-17T07:20:52Z
dc.date.available2018-05-17T07:20:52Z
dc.date.issued2018
dc.identifier.citationThe Journal of Supercomputing. 2018, vol. 74, issue 5, p. 2151-2160.cs
dc.identifier.issn0920-8542
dc.identifier.issn1573-0484
dc.identifier.urihttp://hdl.handle.net/10084/127003
dc.description.abstractIn order to find hyperparameters for a machine learning model, algorithms such as grid search or random search are used over the space of possible values of the models' hyperparameters. These search algorithms opt the solution that minimizes a specific cost function. In language models, perplexity is one of the most popular cost functions. In this study, we propose a fractional nonlinear programming model that finds the optimal perplexity value. The special structure of the model allows us to approximate it by a linear programming model that can be solved using the well-known simplex algorithm. To the best of our knowledge, this is the first attempt to use optimization techniques to find perplexity values in the language modeling literature. We apply our model to find hyperparameters of a language model and compare it to the grid search algorithm. Furthermore, we illustrate that it results in lower perplexity values. We perform this experiment on a real-world dataset from SwiftKey to validate our proposed approach.cs
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofseriesThe Journal of Supercomputingcs
dc.relation.urihttps://doi.org/10.1007/s11227-018-2236-6cs
dc.rights© Springer Science+Business Media, LLC, part of Springer Nature 2018cs
dc.subjectmachine learningcs
dc.subjectlanguage modelcs
dc.subjectn-Gramscs
dc.subjecthyperparameter optimizationcs
dc.subjectoptimizationcs
dc.subjectlinear programmingcs
dc.titleAn LP-based hyperparameter optimization model for language modelingcs
dc.typearticlecs
dc.identifier.doi10.1007/s11227-018-2236-6
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume74cs
dc.description.issue5cs
dc.description.lastpage2160cs
dc.description.firstpage2151cs
dc.identifier.wos000430412400016


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record