Zobrazit minimální záznam

dc.contributor.authorHolčapek, Michal
dc.contributor.authorNguyen, Linh
dc.contributor.authorTichý, Tomáš
dc.date.accessioned2018-05-30T11:33:04Z
dc.date.available2018-05-30T11:33:04Z
dc.date.issued2018
dc.identifier.citationFuzzy Sets and Systems. 2018, vol. 342, p. 1-31.cs
dc.identifier.issn0165-0114
dc.identifier.issn1872-6801
dc.identifier.urihttp://hdl.handle.net/10084/127211
dc.description.abstractIn this article, we propose a general approach to the computation of components of the direct higher degree fuzzy transform. Apart from the orthogonal bases of the subspaces of polynomials of weighted Hilbert spaces with respect to a generalized uniform fuzzy partition, which are used in all papers on fuzzy transform of higher degree, we admit also the non-orthogonal bases. An advantage of using non-orthogonal bases consists in the possibility of replacing orthogonal polynomials, derivation of which by the Gram-Schmidt orthogonalization process can be questionable difficult or imprecise, by suitable non-orthogonal polynomials of much simpler form. We present a simple matrix calculus and show how it can be used to introduce the components of the direct higher degree fuzzy transform. With the help of the monomial basis, we prove a convergence theorem and an approximation theorem for the higher degree fuzzy transform. The results are illustrated by examples including a comparison with standard methods.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesFuzzy Sets and Systemscs
dc.relation.urihttps://doi.org/10.1016/j.fss.2017.06.011cs
dc.rights© 2017 Elsevier B.V. All rights reserved.cs
dc.subjecthigher degree fuzzy transformcs
dc.subjectfuzzy partitioncs
dc.subjectweighted Hilbert spacecs
dc.titlePolynomial alias higher degree fuzzy transform of complex-valued functionscs
dc.typearticlecs
dc.identifier.doi10.1016/j.fss.2017.06.011
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume342cs
dc.description.lastpage31cs
dc.description.firstpage1cs
dc.identifier.wos000432350400001


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam