Show simple item record

dc.contributor.authorUrban, Zbyněk
dc.contributor.authorBrajerčík, Ján
dc.date.accessioned2018-05-30T11:56:15Z
dc.date.available2018-05-30T11:56:15Z
dc.date.issued2018
dc.identifier.citationInternational Journal of Geometric Methods in Modern Physics. 2018, vol. 15, issue 6, art. no. 1850103.cs
dc.identifier.issn0219-8878
dc.identifier.issn1793-6977
dc.identifier.urihttp://hdl.handle.net/10084/127216
dc.description.abstractThe multiple-integral variational functionals for finite-dimensional immersed submanifolds are studied by means of the fundamental Lepage equivalent of a homogeneous Lagrangian, which can be regarded as a generalization of the well-known Hilbert form in the classical mechanics. The notion of a Lepage form is extended to manifolds of regular velocities and plays a basic role in formulation of the variational theory for submanifolds. The theory is illustrated on the minimal submanifolds problem, including analysis of conservation law equations.cs
dc.language.isoencs
dc.publisherWorld Scientific Publishingcs
dc.relation.ispartofseriesInternational Journal of Geometric Methods in Modern Physicscs
dc.relation.urihttps://doi.org/10.1142/S0219887818501037cs
dc.subjectLagrangiancs
dc.subjectEuler-Lagrange formcs
dc.subjectLepage equivalentcs
dc.subjectGrassmann fibrationcs
dc.subjectZermelo conditionscs
dc.subjectminimal surface functionalcs
dc.subjectNoether currentcs
dc.titleThe fundamental Lepage form in variational theory for submanifoldscs
dc.typearticlecs
dc.identifier.doi10.1142/S0219887818501037
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume15cs
dc.description.issue6cs
dc.description.firstpageart. no. 1850103cs
dc.identifier.wos000432458300016


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record