Zobrazit minimální záznam

dc.contributor.advisorValecký, Jiří
dc.contributor.authorXie, Xinyi
dc.date.accessioned2018-06-26T08:01:15Z
dc.date.available2018-06-26T08:01:15Z
dc.date.issued2018
dc.identifier.otherOSD002
dc.identifier.urihttp://hdl.handle.net/10084/127467
dc.description.abstractFor an insurance company, evaluating the aggregate claims distribution is needed. We can easily show how to apply the mixed distribution to the number claims and to the size of claims modelling. In this thesis, we use the mixed distribution in insurance practice as a probability distribution of two important variables. These are the claim numbers N and claim sizes X in different types of insurance portfolio of insurance policies. The key goal of this thesis is to compute the solvency capital requirement (SCR) of a insurance company and to determine the amount that company should hold for covering the total unexpected claims in one year duration. Different types of probability distributions of claim numbers and claim sizes are used in MATLAB, STATA and other programs. Despite the application part, the description of risk and insurance, as well as the description of individual risk model and collective risk model are introduced in Chapter 2. Then, the formula of each distribution, as well as description of maximum likelihood estimation and Monte Carlo simulation are all introduced in Chapter 3. The final result and the conclusion we draw are shown in the end of the thesis.en
dc.description.abstractFor an insurance company, evaluating the aggregate claims distribution is needed. We can easily show how to apply the mixed distribution to the number claims and to the size of claims modelling. In this thesis, we use the mixed distribution in insurance practice as a probability distribution of two important variables. These are the claim numbers N and claim sizes X in different types of insurance portfolio of insurance policies. The key goal of this thesis is to compute the solvency capital requirement (SCR) of a insurance company and to determine the amount that company should hold for covering the total unexpected claims in one year duration. Different types of probability distributions of claim numbers and claim sizes are used in MATLAB, STATA and other programs. Despite the application part, the description of risk and insurance, as well as the description of individual risk model and collective risk model are introduced in Chapter 2. Then, the formula of each distribution, as well as description of maximum likelihood estimation and Monte Carlo simulation are all introduced in Chapter 3. The final result and the conclusion we draw are shown in the end of the thesis.cs
dc.format.extent2085702 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.subjectinsurance risken
dc.subjectindividual risk modelen
dc.subjectcollective risk modelen
dc.subjectmaximum likelihood estimationen
dc.subjectMonte Carlo simulationen
dc.subjectPoisson distributionen
dc.subjectNegative binomial distributionen
dc.subjectNormal distributionen
dc.subjectPareto distributionen
dc.subjectinsurance riskcs
dc.subjectindividual risk modelcs
dc.subjectcollective risk modelcs
dc.subjectmaximum likelihood estimationcs
dc.subjectMonte Carlo simulationcs
dc.subjectPoisson distributioncs
dc.subjectNegative binomial distributioncs
dc.subjectNormal distributioncs
dc.subjectPareto distributioncs
dc.titleApplication of Risk Models to an Insurance Portfolioen
dc.title.alternativeAplikace modelů rizika na pojistný kmencs
dc.typeDiplomová prácecs
dc.contributor.refereePetrová, Ingrid
dc.date.accepted2018-05-30
dc.thesis.degree-nameIng.
dc.thesis.degree-levelMagisterský studijní programcs
dc.thesis.degree-grantorVysoká škola báňská - Technická univerzita Ostrava. Ekonomická fakultacs
dc.description.department154 - Katedra financícs
dc.thesis.degree-programHospodářská politika a správacs
dc.thesis.degree-branchFinancecs
dc.description.resultvýborněcs
dc.identifier.senderS2751
dc.identifier.thesisXIE0003_EKF_N6202_6202T010_2018
dc.rights.accessopenAccess


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam