Zobrazit minimální záznam

dc.contributor.authorTorri, Gabriele
dc.contributor.authorGiacometti, Rosella
dc.contributor.authorPaterlini, Sandra
dc.date.accessioned2018-06-29T05:28:00Z
dc.date.available2018-06-29T05:28:00Z
dc.date.issued2018
dc.identifier.citationEuropean Journal of Operational Research. 2018, vol. 270, issue 1, p. 51-65.cs
dc.identifier.issn0377-2217
dc.identifier.issn1872-6860
dc.identifier.urihttp://hdl.handle.net/10084/130358
dc.description.abstractNetwork analysis is becoming a fundamental tool in the study of systemic risk and financial contagion in the banking sector. Still, the network structure must typically be estimated from noisy and aggregated data, as micro data on the status quo banking network structure are often unavailable, or the true network is unobservable. Graphical models can help researchers to infer network structures, but they are often criticized for relying too heavily on unrealistic assumptions. They also tend to yield dense structures that are difficult to interpret. Here, we propose the tlasso model for estimating sparse banking networks. The tlasso captures the conditional dependence structure between banks through partial correlations, and estimates sparse networks in which only the relevant links are identified. The model also accounts for the non-Gaussianity of financial data and it is robust to outliers and model misspecification. Our empirical analysis focuses on estimating the dependence structure of a sample of European banks from credit default swap data. We observe that the presence of communities in the banking network plays an important role in terms of systemic risk and contagion dynamics. We also introduce a decomposition of strength centrality that allows us to better characterize the role of each bank in the network and to identify the most relevant channels for the transmission of financial distress.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesEuropean Journal of Operational Researchcs
dc.relation.urihttps://doi.org/10.1016/j.ejor.2018.03.041cs
dc.rights© 2018 Elsevier B.V. All rights reserved.cs
dc.subjectfinancecs
dc.subjectfinancial networkscs
dc.subjecttlassocs
dc.subjectgraphical modelscs
dc.subjectCDS spreadscs
dc.titleRobust and sparse banking network estimationcs
dc.typearticlecs
dc.identifier.doi10.1016/j.ejor.2018.03.041
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume270cs
dc.description.issue1cs
dc.description.lastpage65cs
dc.description.firstpage51cs
dc.identifier.wos000435062800004


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam