Zobrazit minimální záznam

dc.contributor.authorBarošová, Hana
dc.contributor.authorChortarea, Savvina
dc.contributor.authorPeikertová, Pavlína
dc.contributor.authorClift, Martin J. D.
dc.contributor.authorPetri-Fink, Alke
dc.contributor.authorKukutschová, Jana
dc.contributor.authorRothen-Rutishauser, Barbara
dc.date.accessioned2018-07-10T10:35:37Z
dc.date.available2018-07-10T10:35:37Z
dc.date.issued2018
dc.identifier.citationArchives of Toxicology. 2018, vol. 92, issue 7, p. 2339-2351.cs
dc.identifier.issn0340-5761
dc.identifier.issn1432-0738
dc.identifier.urihttp://hdl.handle.net/10084/130507
dc.description.abstractWear particles from automotive friction brake pads of various sizes, morphology, and chemical composition are significant contributors towards particulate matter. Knowledge concerning the potential adverse effects following inhalation exposure to brake wear debris is limited. Our aim was, therefore, to generate brake wear particles released from commercial low-metallic and non-asbestos organic automotive brake pads used in mid-size passenger cars by a full-scale brake dynamometer with an environmental chamber simulating urban driving and to deduce their potential hazard in vitro. The collected fractions were analysed using scanning electron microscopy via energy-dispersive X-ray spectroscopy (SEM-EDS) and Raman microspectroscopy. The biological impact of the samples was investigated using a human 3D multicellular model consisting of human epithelial cells (A549) and human primary immune cells (macrophages and dendritic cells) mimicking the human epithelial tissue barrier. The viability, morphology, oxidative stress, and (pro-)inflammatory response of the cells were assessed following 24 h exposure to similar to 12, similar to 24, and similar to 48 A mu g/cm(2) of non-airborne samples and to similar to 3.7 A mu g/cm(2) of different brake wear size fractions (2-4, 1-2, and 0.25-1 A mu m) applying a pseudo-air-liquid interface approach. Brake wear debris with low-metallic formula does not induce any adverse biological effects to the in vitro lung multicellular model. Brake wear particles from non-asbestos organic formulated pads, however, induced increased (pro-)inflammatory mediator release from the same in vitro system. The latter finding can be attributed to the different particle compositions, specifically the presence of anatase.cs
dc.format.extent2044433 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofseriesArchives of Toxicologycs
dc.relation.urihttps://doi.org/10.1007/s00204-018-2218-8cs
dc.rights© The Author(s) 2018cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectbrake wear particlescs
dc.subjecttoxicitycs
dc.subject3D model of the human alveolar epithelial tissue barriercs
dc.subjectin vitrocs
dc.subjectfull-scale automotive brake dynamometercs
dc.titleBiological response of an in vitro human 3D lung cell model exposed to brake wear debris varies based on brake pad formulationcs
dc.typearticlecs
dc.identifier.doi10.1007/s00204-018-2218-8
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume92cs
dc.description.issue7cs
dc.description.lastpage2351cs
dc.description.firstpage2339cs
dc.identifier.wos000436105400015


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© The Author(s) 2018
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © The Author(s) 2018