Zobrazit minimální záznam

dc.contributor.authorZaorálek, Lukáš
dc.contributor.authorPlatoš, Jan
dc.contributor.authorSnášel, Václav
dc.date.accessioned2018-09-03T08:04:41Z
dc.date.available2018-09-03T08:04:41Z
dc.date.issued2018
dc.identifier.citationNeural Network World. 2018, vol. 28, issue 3, p. 241-254.cs
dc.identifier.issn1210-0552
dc.identifier.issn2336-4335
dc.identifier.urihttp://hdl.handle.net/10084/131437
dc.description.abstractHeart disease diagnosis is an important non-invasive technique. Therefore, there exists an effort to increase the accuracy of arrhythmia classification based on ECG signals. In this work, we present a novel approach of heart arrhythmia detection. The model consists of two parts. The first part extracts important features from raw ECG signal using Auto-Encoder Neural Network. Extracted features obtained by Auto-Encoder represent an input for the second part of the model, the Gradient Boosting and Feedforward Neural Network classifiers. For comparison purposes, we evaluated our approach by using MIT-BIH ECG database and also following recommendations of the Association for the Advancement of Medical Instrumentation (AAMI) for ECG class labeling. We divided our experiment into two scenarios. The first scenario represents the classification task for the patient-adapted paradigm and the second one was dedicated to the inter-patient paradigm. We compared the measured results to the state-of-the-art methods and it shows that our method outperforms the state-of-the art methods in the Ventricular Ectopic (VEB) class for both paradigms and Supraventricular Ectopic (SVEB) class in the inter-patient paradigm.cs
dc.format.extent507791 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoencs
dc.publisherČVUT, Fakulta dopravní; VŠB-TU Ostrava, Fakulta elektrotechniky a informatikycs
dc.relation.ispartofseriesNeural Network Worldcs
dc.relation.urihttp://doi.org/10.14311/NNW.2018.28.015cs
dc.subjectECGcs
dc.subjectAAMIcs
dc.subjectVEBcs
dc.subjectSVEBcs
dc.subjectGBMcs
dc.subjectANNcs
dc.titlePatient-adapted and inter-patient ecg classification using neural network and gradient boostingcs
dc.typearticlecs
dc.identifier.doi10.14311/NNW.2018.28.015
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume28cs
dc.description.issue3cs
dc.description.lastpage254cs
dc.description.firstpage241cs
dc.identifier.wos000440210500004


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam