Zobrazit minimální záznam

dc.contributor.authorDostál, Zdeněk
dc.contributor.authorPospíšil, Lukáš
dc.date.accessioned2018-09-10T12:30:52Z
dc.date.available2018-09-10T12:30:52Z
dc.date.issued2018
dc.identifier.citationInternational Journal of Computer Mathematics. 2018, vol. 95, issue 11, p. 2229-2239.cs
dc.identifier.issn0020-7160
dc.identifier.issn1029-0265
dc.identifier.urihttp://hdl.handle.net/10084/131648
dc.description.abstractThe cgSLS (conjugate gradients for symmetric positive semidefinite least-squares) algorithm is presented. The algorithm exploits the cyclic property of invariant Krylov spaces to reduce the least-squares problem with a symmetric positive semidefinite matrix A to the minimization of the related energy function with the Hessian A on the range of A, so that a simple modification of the conjugate gradient (CG) method is applicable. At the same time, the algorithm generates approximations of the projection of the right-hand side to the range of A. The asymptotic rate of convergence of the new algorithm is proved to be the same as that of the CG method for the related consistent problem. An error bound in terms of the square root of the regular condition number of A is also given. The performance of the algorithm is demonstrated by numerical experiments.cs
dc.language.isoencs
dc.publisherTaylor & Franciscs
dc.relation.ispartofseriesInternational Journal of Computer Mathematicscs
dc.relation.urihttp://doi.org/10.1080/00207160.2017.1371701cs
dc.rightsRights managed by Taylor & Franciscs
dc.subjectsemidefinite least-squarescs
dc.subjectconjugate gradientscs
dc.titleConjugate gradients for symmetric positive semidefinite least-squares problemscs
dc.typearticlecs
dc.identifier.doi10.1080/00207160.2017.1371701
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume95cs
dc.description.issue11cs
dc.description.lastpage2239cs
dc.description.firstpage2229cs
dc.identifier.wos000441950200005


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam