Zobrazit minimální záznam

dc.contributor.authorZjavka, Ladislav
dc.contributor.authorSokol, Zbyněk
dc.date.accessioned2018-09-11T07:34:51Z
dc.date.available2018-09-11T07:34:51Z
dc.date.issued2018
dc.identifier.citationQuarterly Journal of The Royal Meteorological Society. 2018, vol. 144, issue 712, p. 780-791.cs
dc.identifier.issn0035-9009
dc.identifier.issn1477-870X
dc.identifier.urihttp://hdl.handle.net/10084/131662
dc.description.abstractLarge-scale forecast models are based on the numerical integration of differential equation systems, which can describe atmospheric processes in light of global meteorological observations. Mesoscale forecast systems need to define the initial and lateral boundary conditions, which may be carried out with robust global numerical models. Their overall solutions are able to describe the dynamic weather system on the Earth scale using a large number of complete globe 3D matrix variables in several atmospheric layers. Post-processing methods using local measurements were developed in order to clarify surface weather details and adapt numerical weather prediction model outputs for local conditions. Differential polynomial network is a new type of neural network that can model local weather using spatial data observations to process forecasts of the input variables and revise the target 24 h prognosis. It defines and solves general partial differential equations, being able to describe unknown dynamic systems. The proposed forecast correction method uses a differential network to estimate the optimal numbers of training days and form derivative prediction models. It can improve final numerical forecasts, processed with additional data analysis and statistical techniques, in the majority of cases. The two-stage procedure presented is analogous to the perfect-prognosis method using real observations to derive a model, which is applied to the forecasts of the predictors to calculate output predictions.cs
dc.language.isoencs
dc.publisherWileycs
dc.relation.ispartofseriesQuarterly Journal of The Royal Meteorological Societycs
dc.relation.urihttps://doi.org/10.1002/qj.3247cs
dc.rights© 2018 Royal Meteorological Societycs
dc.subjectgeneral differential equation decompositioncs
dc.subjectpolynomial neural networkcs
dc.subjectregression correction modelcs
dc.subjectsubstitution relative derivative termcs
dc.titleLocal improvements in numerical forecasts of relative humidity using polynomial solutions of general differential equationscs
dc.typearticlecs
dc.identifier.doi10.1002/qj.3247
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume144cs
dc.description.issue712cs
dc.description.lastpage791cs
dc.description.firstpage780cs
dc.identifier.wos000443007800012


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam