Zobrazit minimální záznam

dc.contributor.authorPraks, Pavel
dc.contributor.authorBrkić, Dejan
dc.date.accessioned2018-09-24T11:13:56Z
dc.date.available2018-09-24T11:13:56Z
dc.date.issued2018
dc.identifier.citationProcesses. 2018, vol. 6, issue 8, art. no. 130.cs
dc.identifier.issn2227-9717
dc.identifier.urihttp://hdl.handle.net/10084/132100
dc.description.abstractThe Colebrook equation is implicitly given in respect to the unknown flow friction factor lambda; lambda = zeta(Re, epsilon*, lambda) which cannot be expressed explicitly in exact way without simplifications and use of approximate calculus. A common approach to solve it is through the Newton-Raphson iterative procedure or through the fixed-point iterative procedure. Both require in some cases, up to seven iterations. On the other hand, numerous more powerful iterative methods such as three-or two-point methods, etc. are available. The purpose is to choose optimal iterative method in order to solve the implicit Colebrook equation for flow friction accurately using the least possible number of iterations. The methods are thoroughly tested and those which require the least possible number of iterations to reach the accurate solution are identified. The most powerful three-point methods require, in the worst case, only two iterations to reach the final solution. The recommended representatives are Sharma-Guha-Gupta, Sharma-Sharma, Sharma-Arora, Dzunic-Petkovic-Petkovic; Bi-Ren-Wu, Chun-Neta based on Kung-Traub, Neta, and the Jain method based on the Steffensen scheme. The recommended iterative methods can reach the final accurate solution with the least possible number of iterations. The approach is hybrid between the iterative procedure and one-step explicit approximations and can be used in engineering design for initial rough, but also for final fine calculations.cs
dc.format.extent377692 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesProcessescs
dc.relation.urihttp://doi.org/10.3390/pr6080130cs
dc.rights© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectColebrook equationcs
dc.subjectColebrook–Whitecs
dc.subjectiterative methodscs
dc.subjectthree-point methodscs
dc.subjectturbulent flowcs
dc.subjecthydraulic resistancescs
dc.subjectpipescs
dc.subjectexplicit approximationscs
dc.titleChoosing the optimal multi-point iterative method for the Colebrook flow friction equationcs
dc.typearticlecs
dc.identifier.doi10.3390/pr6080130
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume6cs
dc.description.issue8cs
dc.description.firstpageart. no. 130cs
dc.identifier.wos000443615900034


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.