Zobrazit minimální záznam

dc.contributor.authorChen, Shu
dc.contributor.authorFu, Zhongheng
dc.contributor.authorZhang, Hang
dc.contributor.authorLegut, Dominik
dc.contributor.authorGermann, Timothy Clark
dc.contributor.authorZhang, Qianfan
dc.contributor.authorDu, Shiyu
dc.contributor.authorFrancisco, Joseph S.
dc.contributor.authorZhang, Ruifeng
dc.date.accessioned2018-12-14T09:32:06Z
dc.date.available2018-12-14T09:32:06Z
dc.date.issued2018
dc.identifier.citationAdvanced Functional Materials. 2018, vol. 28, issue 44, art. no. 1804867.cs
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttp://hdl.handle.net/10084/133416
dc.description.abstract2D transition metal carbides and/or nitrides (MXenes) have attracted enormous attention because of their potential applications in energy storage, catalysis, and others. The control of surface terminations is generally believed to offer the potential preparation approaches to novel MXenes, while an external strain may provide solution to property modification. However, an atomistic understanding on the stabilization of surface complexity and the influence of strain on electrochemical properties of MXenes are scarce yet much demanded. Herein, taking Ti2CTn as a representative MXene, the thermodynamically favorable configurations are explored with a mixture of functional groups under various electrochemical environments. It predicts that five thermodynamically preferable Ti2CTn terminated by O Symbol of the Klingon Empire and F Symbol of the Klingon Empire cofunctionalized groups are discovered, all of which show excellent mechanical flexibility and strength that appear a decreasing trend as increasing F/O ratio. Further investigations on strain-controllable Li-transport of these cofunctionalized Ti2CT2 indicate that a mixture of surface terminations decreases the diffusion barriers, while the uniaxial strain modifies the diffusion pathways of Li atom owing to asymmetrical surface geometry and electronic polarization. These findings provide a view on the modification of properties by controlling surface complexity, demonstrating effective pathways in designing MXenes by electrochemical approach and tuning electrochemical property by strains.cs
dc.language.isoencs
dc.publisherWileycs
dc.relation.ispartofseriesAdvanced Functional Materialscs
dc.relation.urihttp://doi.org/10.1002/adfm.201804867cs
dc.rights© 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheimcs
dc.subjectdensity functional theorycs
dc.subjectMXenecs
dc.subjectstrain modificationcs
dc.subjectsurface functional groupscs
dc.titleSurface electrochemical stability and strain-tunable lithium storage of highly flexible 2D transition metal carbidescs
dc.typearticlecs
dc.identifier.doi10.1002/adfm.201804867
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume28cs
dc.description.issue44cs
dc.description.firstpageart. no. 1804867cs
dc.identifier.wos000450367700020


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam