Zobrazit minimální záznam

dc.contributor.authorLampart, Marek
dc.contributor.authorZapoměl, Jaroslav
dc.date.accessioned2019-01-29T11:59:59Z
dc.date.available2019-01-29T11:59:59Z
dc.date.issued2018
dc.identifier.citationMathematical Methods in The Applied Sciences. 2018, vol. 41, issue 17, special issue, p. 7106-7114.cs
dc.identifier.issn0170-4214
dc.identifier.issn1099-1476
dc.identifier.urihttp://hdl.handle.net/10084/133689
dc.description.abstractThis researchwasmotivated by a real technological problem of vibrations of bodies hanging on chains or ropes in tubes or spaces limited bywalls or other bodies. The studied system has two degrees of freedom. It is formed by two pendulums moving between two walls. Its movement is governed by a set of nonlinear ordinary differential equations. The results of the simulations shown that the system exhibits regular and chaotic movement. The simulations were performed for 3 excitation amplitudes and the range of the excitation frequencies between 1 and 30 rad s(-1). The subject of the investigations was the determination of the character of the pendulums' motions and identification of their collisions with the sided walls.cs
dc.language.isoencs
dc.publisherWileycs
dc.relation.ispartofseriesMathematical Methods in the Applied Sciencescs
dc.relation.urihttp://doi.org/10.1002/mma.4650cs
dc.rightsCopyright © 2017 John Wiley & Sons, Ltd.cs
dc.subjectbifurcationcs
dc.subjectchaos testscs
dc.subjectmechanical modelcs
dc.subjectvibrationcs
dc.titleDynamical properties of a nonautonomous double pendulum modelcs
dc.typearticlecs
dc.identifier.doi10.1002/mma.4650
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume41cs
dc.description.issue17cs
dc.description.lastpage7114cs
dc.description.firstpage7106cs
dc.identifier.wos000452611200001


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam