Stronger and more failure-resistant with three-dimensional serrated bimetal interfaces
dc.contributor.author | Kong, Xiangfei | |
dc.contributor.author | Beyerlein, Irene J. | |
dc.contributor.author | Liu, Z. R. | |
dc.contributor.author | Yao, B. N. | |
dc.contributor.author | Legut, Dominik | |
dc.contributor.author | Germann, Timothy Clark | |
dc.contributor.author | Zhang, Ruifeng | |
dc.date.accessioned | 2019-03-12T10:33:30Z | |
dc.date.available | 2019-03-12T10:33:30Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Acta Materialia. 2019, vol. 166, p. 231-245. | cs |
dc.identifier.issn | 1359-6454 | |
dc.identifier.issn | 1873-2453 | |
dc.identifier.uri | http://hdl.handle.net/10084/134192 | |
dc.description.abstract | Low-energy structures of bimetal interfaces commonly occur in nature, yet higher energy forms, made by deviations in the interface plane, are also likely. While these variants may occur less frequently, they can still play an important role in the response of the material under deformation, by acting as preferential sites for defect formation and boundary motion. Here, using atomic-scale simulation and interface defect theory and considering two bimetal systems, Cu/Ag and Cu/Nb, we show that high-energy interfaces can achieve a local, low-energy state by forming atomic-scale serrations and that the predicted size and location of the serrations are consistent with experimental observation. For several distinct strain states, we reveal that interfaces with atomic-scale serrations bear both higher barriers for dislocation nucleation and higher resistances to interfacial shear compared to their planar interface variants. This desirable combination is not a characteristic of the more commonly studied low-energy interfaces, which typically possess a high nucleation barrier and low sliding resistance. We explain, through an analysis of the misfit dislocation structure, that the serrations alter the number of dislocations emitted, change the favorable slip systems, and alleviate the stress concentrations generated by misfit dislocations. An interface engineering strategy is then proposed for designing atomically serrated interfaces to improve mechanical strength and hinder localization and creep of metallic nanomaterials. | cs |
dc.language.iso | en | cs |
dc.publisher | Elsevier | cs |
dc.relation.ispartofseries | Acta Materialia | cs |
dc.relation.uri | http://doi.org/10.1016/j.actamat.2018.12.051 | cs |
dc.rights | © 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. | cs |
dc.subject | atomistic simulations | cs |
dc.subject | interfaces | cs |
dc.subject | serrations | cs |
dc.subject | enhancement | cs |
dc.subject | dislocation nucleation | cs |
dc.title | Stronger and more failure-resistant with three-dimensional serrated bimetal interfaces | cs |
dc.type | article | cs |
dc.identifier.doi | 10.1016/j.actamat.2018.12.051 | |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 166 | cs |
dc.description.lastpage | 245 | cs |
dc.description.firstpage | 231 | cs |
dc.identifier.wos | 000459358200022 |
Soubory tohoto záznamu
Soubory | Velikost | Formát | Zobrazit |
---|---|---|---|
K tomuto záznamu nejsou připojeny žádné soubory. |
Tento záznam se objevuje v následujících kolekcích
-
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science [7798]
Kolekce obsahuje bibliografické záznamy článků akademických pracovníků VŠB-TUO publikovaných v časopisech indexovaných ve Web of Science od roku 1990 po současnost. -
Publikační činnost IT4Innovations / Publications of IT4Innovations (9600) [841]
-
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals [6377]
Články z časopisů (od roku 2008), které v době vydání článku měly impakt faktor.