Zobrazit minimální záznam

dc.contributor.authorZus, Florian
dc.contributor.authorDouša, Jan
dc.contributor.authorKačmařík, Michal
dc.contributor.authorVáclavovic, Pavel
dc.contributor.authorDick, Galina
dc.contributor.authorWickert, Jens
dc.date.accessioned2019-04-12T05:26:55Z
dc.date.available2019-04-12T05:26:55Z
dc.date.issued2019
dc.identifier.citationRemote Sensing. 2019, vol. 11, issue 1, art. no. 41.cs
dc.identifier.issn2072-4292
dc.identifier.urihttp://hdl.handle.net/10084/134608
dc.description.abstractWe developed operators to assimilate Global Navigation Satellite System (GNSS) Zenith Total Delays (ZTDs) and horizontal delay gradients into a numerical weather model. In this study we experiment with refractivity fields derived from the Global Forecast System (GFS) available with a horizontal resolution of 0.5 degrees. We begin our investigations with simulated observations. In essence, we extract the tropospheric parameters from the GFS analysis, add noise to mimic observation errors and assimilate the simulated observations into the GFS 24h forecast valid at the same time. We consider three scenarios: (1) the assimilation of ZTDs (2) the assimilation of horizontal delay gradients and (3) the assimilation of both ZTDs and horizontal delay gradients. The impact is measured by utilizing the refractivity fields. We find that the assimilation of the horizontal delay gradients in addition to the ZTDs improves the refractivity field around 800 hPa. When we consider a single station there is a clear improvement when horizontal delay gradients are assimilated in addition to the ZTDs because the horizontal delay gradients contain information that is not contained in the ZTDs. On the other hand, when we consider a dense station network there is not a significant improvement when horizontal delay gradients are assimilated in addition to the ZTDs because the horizontal delay gradients do not contain information that is not already contained in the ZTDs. Finally, we replace simulated by real observations, that is, tropospheric parameters from a Precise Point Positioning solution provided with the G-Nut/Tefnut software, in order to show that the GFS 24h forecast is indeed improved when GNSS horizontal delay gradients are assimilated in addition to GNSS ZTDs; for the considered station (Potsdam, Germany) and period (June and July, 2017) we find an improvement in the retrieved refractivity of up to 4%.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesRemote Sensingcs
dc.relation.urihttps://doi.org/10.3390/rs11010041cs
dc.rights© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectGNSScs
dc.subjecthorizontal delay gradientcs
dc.subjectnumerical weather predictioncs
dc.subjectdata assimilationcs
dc.titleEstimating the impact of Global Navigation Satellite System horizontal delay gradients in variational data assimilationcs
dc.typearticlecs
dc.identifier.doi10.3390/rs11010041
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume11cs
dc.description.issue1cs
dc.description.firstpageart. no. 41cs
dc.identifier.wos000457935600041


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.