Zobrazit minimální záznam

dc.contributor.authorToloo, Mehdi
dc.contributor.authorMensah, Emmanuel Kwasi
dc.date.accessioned2019-04-26T11:25:45Z
dc.date.available2019-04-26T11:25:45Z
dc.date.issued2019
dc.identifier.citationComputers & Industrial Engineering. 2019, vol. 127, p. 313-325.cs
dc.identifier.issn0360-8352
dc.identifier.issn1879-0550
dc.identifier.urihttp://hdl.handle.net/10084/134759
dc.description.abstractRobust optimization has become the state-of-the-art approach for solving linear optimization problems with uncertain data. Though relatively young, the robust approach has proven to be essential in many real-world applications. Under this approach, robust counterparts to prescribed uncertainty sets are constructed for general solutions to corresponding uncertain linear programming problems. It is remarkable that in most practical problems, the variables represent physical quantities and must be nonnegative. In this paper, we propose alternative robust counterparts with nonnegative decision variables - a reduced robust approach which attempts to minimize model complexity. The new framework is extended to the robust Data Envelopment Analysis (DEA) with the aim of reducing the computational burden. In the DEA methodology, first we deal with the equality in the normalization constraint and then a robust DEA based on the reduced robust counterpart is proposed. The proposed model is examined with numerical data from 250 European banks operating across the globe. The results indicate that the proposed approach (i) reduces almost 50% of the computational burden required to solve DEA problems with nonnegative decision variables; (ii) retains only essential (non-redundant) constraints and decision variables without alerting the optimal value.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesComputers & Industrial Engineeringcs
dc.relation.urihttps://doi.org/10.1016/j.cie.2018.10.006cs
dc.rights© 2018 Elsevier Ltd. All rights reserved.cs
dc.subjectrobust optimizationcs
dc.subjectnonnegative variablescs
dc.subjectcomplexitycs
dc.subjectData Envelopment Analysis (DEA)cs
dc.subjectrobust DEAcs
dc.titleRobust optimization with nonnegative decision variables: A DEA approachcs
dc.typearticlecs
dc.identifier.doi10.1016/j.cie.2018.10.006
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume127cs
dc.description.lastpage325cs
dc.description.firstpage313cs
dc.identifier.wos000460708800025


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam