Show simple item record

dc.contributor.authorČermák, Martin
dc.contributor.authorSysala, Stanislav
dc.contributor.authorValdman, Jan
dc.date.accessioned2019-05-10T11:26:18Z
dc.date.available2019-05-10T11:26:18Z
dc.date.issued2019
dc.identifier.citationApplied Mathematics and Computation. 2019, vol. 355, p. 595-614.cs
dc.identifier.issn0096-3003
dc.identifier.issn1873-5649
dc.identifier.urihttp://hdl.handle.net/10084/134869
dc.description.abstractFully vectorized MATLAB implementation of various elastoplastic problems formulated in terms of displacement is considered. It is based on implicit time discretization, the finite element method and the semismooth Newton method. Each Newton iteration represents a linear system of equations with a tangent stiffness matrix. We propose a decomposition of this matrix consisting of three large sparse matrices representing the elastic stiffness operator, the strain-displacement operator, and the derivative of the stress-strain operator. The first two matrices are fixed and assembled once and only the third matrix needs to be updated in each iteration. Assembly times of the tangent stiffness matrices are linearly proportional to the number of plastic integration points in practical computations and never exceed the assembly time of the elastic stiffness matrix. MATLAB codes are available for download and provide complete finite element implementations in both 2D and 3D assuming von Mises and Drucker-Prager yield criteria. One can also choose several finite elements and numerical quadrature rules.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesApplied Mathematics and Computationcs
dc.relation.urihttps://doi.org/10.1016/j.amc.2019.02.054cs
dc.rights© 2019 Elsevier Inc. All rights reserved.cs
dc.subjectMATLAB code vectorizationcs
dc.subjectelastoplasticitycs
dc.subjectfinite element methodcs
dc.subjecttangential stiffness matrixcs
dc.subjectsemismooth Newton methodcs
dc.titleEfficient and flexible MATLAB implementation of 2D and 3D elastoplastic problemscs
dc.typearticlecs
dc.identifier.doi10.1016/j.amc.2019.02.054
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume355cs
dc.description.lastpage614cs
dc.description.firstpage595cs
dc.identifier.wos000464930500044


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record