Zobrazit minimální záznam

dc.contributor.authorJespersen, Bjørn
dc.date.accessioned2019-05-17T07:35:52Z
dc.date.available2019-05-17T07:35:52Z
dc.date.issued2019
dc.identifier.citationSynthese. 2019, vol. 196, issue 4, special issue, p. 1285-1324.cs
dc.identifier.issn0039-7857
dc.identifier.issn1573-0964
dc.identifier.urihttp://hdl.handle.net/10084/134977
dc.description.abstractThis paper addresses the mereological problem of the unity of structured propositions. The problem is how to make multiple parts interact such that they form a whole that is ultimately related to truth and falsity. The solution I propose is based on a Platonist variant of procedural semantics. I think of procedures as abstract entities that detail a logical path from input to output. Procedures are modeled on a function/argument logic, but are not functions (mappings). Instead they are higher-order, fine-grained structures. I identify propositions with particular kinds of molecular procedures containing multiple sub-procedures as parts. Procedures are among the basic entities of my ontology, while propositions are derived entities. The core of a structured proposition is the procedure of predication, which is an instance of the procedure of functional application. The main thesis I defend is that procedurally conceived propositions are their own unifiers detailing how their parts interact so as to form a unit. They are not unified by one of their constituents, e.g., a relation or a sub-procedure, on pain of regress. The relevant procedural semantics is Transparent Intensional Logic, a hyperintensional, typed -calculus, whose -terms express four different kinds of procedures. While demonstrating how the theory works, I place my solution in a wider historical and systematic context.cs
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofseriesSynthesecs
dc.relation.urihttps://doi.org/10.1007/s11229-017-1512-ycs
dc.rights© Springer Nature B.V. 2017cs
dc.subjectpropositioncs
dc.subjectunitycs
dc.subjectstructurecs
dc.subjectpredicationcs
dc.subjectprocedural semanticscs
dc.subjectTransparent Intensional Logiccs
dc.subjecttype theorycs
dc.subjectlambda-calculuscs
dc.titleAnatomy of a propositioncs
dc.typearticlecs
dc.identifier.doi10.1007/s11229-017-1512-y
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume196cs
dc.description.issue4cs
dc.description.lastpage1324cs
dc.description.firstpage1285cs
dc.identifier.wos000463169600004


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam