Zobrazit minimální záznam

dc.contributor.authorVaňuš, Jan
dc.contributor.authorKubíček, Jan
dc.contributor.authorGorjani, Ojan Majidzadeh
dc.contributor.authorKoziorek, Jiří
dc.date.accessioned2019-06-11T07:26:06Z
dc.date.available2019-06-11T07:26:06Z
dc.date.issued2019
dc.identifier.citationSensors. 2019, vol. 19, issue 6, art. no. 1407.cs
dc.identifier.issn1424-8220
dc.identifier.urihttp://hdl.handle.net/10084/135191
dc.description.abstractStandard solutions for handling a large amount of measured data obtained from intelligent buildings are currently available as software tools in IoT platforms. These solutions optimize the operational and technical functions managing the quality of the indoor environment and factor in the real needs of residents. The paper examines the possibilities of increasing the accuracy of CO2 predictions in Smart Home Care (SHC) using the IBM SPSS software tools in the IoT to determine the occupancy times of a monitored SHC room. The processed data were compared at daily, weekly and monthly intervals for the spring and autumn periods. The Radial Basis Function (RBF) method was applied to predict CO2 levels from the measured indoor and outdoor temperatures and relative humidity. The most accurately predicted results were obtained from data processed at a daily interval. To increase the accuracy of CO2 predictions, a wavelet transform was applied to remove additive noise from the predicted signal. The prediction accuracy achieved in the selected experiments was greater than 95%.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesSensorscs
dc.relation.urihttps://doi.org/10.3390/s19061407cs
dc.rights© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectSmart Home Care (SHC)cs
dc.subjectmonitoringcs
dc.subjectpredictioncs
dc.subjecttrend detectioncs
dc.subjectArtificial Neural Network (ANN)cs
dc.subjectRadial Basis Function (RBF)cs
dc.subjectWavelet Transformation (WT)cs
dc.subjectSPSS (Statistical Package for the Social Sciences)cs
dc.subjectIBMcs
dc.subjectIoT (Internet of Things)cs
dc.subjectActivities of Daily Living (ADL)cs
dc.titleUsing the IBM SPSS SW tool with wavelet transformation for CO2 prediction within IoT in Smart Home Carecs
dc.typearticlecs
dc.identifier.doi10.3390/s19061407
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume19cs
dc.description.issue6cs
dc.description.firstpageart. no. 1407cs
dc.identifier.wos000465520200096


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.