dc.contributor.author | Daněček, Josef | |
dc.contributor.author | Viszus, Eugen | |
dc.date.accessioned | 2019-09-05T09:00:49Z | |
dc.date.available | 2019-09-05T09:00:49Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Zeitschrift fur Analysis und Ihre Anwendungen. 2019, vol. 38, issue 3, p. 329-349. | cs |
dc.identifier.issn | 0232-2064 | |
dc.identifier.issn | 1661-4534 | |
dc.identifier.uri | http://hdl.handle.net/10084/138483 | |
dc.description.abstract | We consider minima of variational integrals with non-differentiable integrands in the form f (x, u, Du) = < A(x)Du, Du > + g(x, u, Du). Assuming that the part g(x, u, z) is equipped by sub-quadratic growth in z only for big value of vertical bar z vertical bar (but the growth is arbitrarily close to the quadratic one), we prove the everywhere Morrey and BMO regularity for gradients of minima. | cs |
dc.language.iso | en | cs |
dc.publisher | European Mathematical Society | cs |
dc.relation.ispartofseries | Zeitschrift fur Analysis und Ihre Anwendungen | cs |
dc.relation.uri | http://doi.org/10.4171/ZAA/1640 | cs |
dc.rights | © 2019 EMS Publishing House. All rights reserved. | cs |
dc.subject | nonlinear functionals | cs |
dc.subject | regularity | cs |
dc.subject | Morrey–Campanato spaces | cs |
dc.title | On Morrey and BMO regularity for gradients of minima of certain non-differentiable functionals | cs |
dc.type | article | cs |
dc.identifier.doi | 10.4171/ZAA/1640 | |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 38 | cs |
dc.description.issue | 3 | cs |
dc.description.lastpage | 349 | cs |
dc.description.firstpage | 329 | cs |
dc.identifier.wos | 000475497300004 | |