Zobrazit minimální záznam

dc.contributor.advisorTichý, Tomáš
dc.contributor.authorBarak, Sasan
dc.date.accessioned2019-09-26T07:26:51Z
dc.date.available2019-09-26T07:26:51Z
dc.date.issued2019
dc.identifier.otherOSD002
dc.identifier.urihttp://hdl.handle.net/10084/138557
dc.description.abstractPredicting stock prices is an essential objective in the financial world. Forecasting stock returns and their risk represents one of the most critical concerns of market decision makers. This thesis investigates the stock price forecasting with three approaches from the data mining concept and shows how different elements in the stock price can help to enhance the accuracy of our prediction. For this reason, the first and second approaches capture many fundamental indicators from the stocks and implement them as explanatory variables to do stock price classification and forecasting. In the third approach, technical features from the candlestick representation of the share prices are extracted and used to enhance the accuracy of the forecasting. In each approach, different tools and techniques from data mining and machine learning are employed to justify why the forecasting is working. Furthermore, since the idea is to evaluate the potential of features in the stock trend forecasting, therefore we diversify our experiments using both technical and fundamental features. Therefore, in the first approach, a three-stage methodology is developed while in the first step, a comprehensive investigation of all possible features which can be effective on stocks risk and return are identified. Then, in the next stage, risk and return are predicted by applying data mining techniques for the given features. Finally, we develop a hybrid algorithm, based on some filters and function-based clustering; and re-predicted the risk and return of stocks. In the second approach, instead of using single classifiers, a fusion model is proposed based on the use of multiple diverse base classifiers that operate on a common input and a meta-classifier that learns from base classifiers’ outputs to obtain a more precise stock return and risk predictions. A set of diversity methods, including Bagging, Boosting, and AdaBoost, is applied to create diversity in classifier combinations. Moreover, the number and procedure for selecting base classifiers for fusion schemes are determined using a methodology based on dataset clustering and candidate classifiers’ accuracy. Finally, in the third approach, a novel forecasting model for stock markets based on the wrapper ANFIS (Adaptive Neural Fuzzy Inference System) – ICA (Imperialist Competitive Algorithm) and technical analysis of Japanese Candlestick is presented. Two approaches of Raw-based and Signal-based are devised to extract the model’s input variables and buy and sell signals are considered as output variables. To illustrate the methodologies, for the first and second approaches, Tehran Stock Exchange (TSE) data for the period from 2002 to 2012 are applied, while for the third approach, we used General Motors and Dow Jones indexes.en
dc.description.abstractPredicting stock prices is an essential objective in the financial world. Forecasting stock returns and their risk represents one of the most critical concerns of market decision makers. This thesis investigates the stock price forecasting with three approaches from the data mining concept and shows how different elements in the stock price can help to enhance the accuracy of our prediction. For this reason, the first and second approaches capture many fundamental indicators from the stocks and implement them as explanatory variables to do stock price classification and forecasting. In the third approach, technical features from the candlestick representation of the share prices are extracted and used to enhance the accuracy of the forecasting. In each approach, different tools and techniques from data mining and machine learning are employed to justify why the forecasting is working. Furthermore, since the idea is to evaluate the potential of features in the stock trend forecasting, therefore we diversify our experiments using both technical and fundamental features. Therefore, in the first approach, a three-stage methodology is developed while in the first step, a comprehensive investigation of all possible features which can be effective on stocks risk and return are identified. Then, in the next stage, risk and return are predicted by applying data mining techniques for the given features. Finally, we develop a hybrid algorithm, based on some filters and function-based clustering; and re-predicted the risk and return of stocks. In the second approach, instead of using single classifiers, a fusion model is proposed based on the use of multiple diverse base classifiers that operate on a common input and a meta-classifier that learns from base classifiers’ outputs to obtain a more precise stock return and risk predictions. A set of diversity methods, including Bagging, Boosting, and AdaBoost, is applied to create diversity in classifier combinations. Moreover, the number and procedure for selecting base classifiers for fusion schemes are determined using a methodology based on dataset clustering and candidate classifiers’ accuracy. Finally, in the third approach, a novel forecasting model for stock markets based on the wrapper ANFIS (Adaptive Neural Fuzzy Inference System) – ICA (Imperialist Competitive Algorithm) and technical analysis of Japanese Candlestick is presented. Two approaches of Raw-based and Signal-based are devised to extract the model’s input variables and buy and sell signals are considered as output variables. To illustrate the methodologies, for the first and second approaches, Tehran Stock Exchange (TSE) data for the period from 2002 to 2012 are applied, while for the third approach, we used General Motors and Dow Jones indexes.cs
dc.format110 listů : ilustrace + 2 přílohy
dc.format.extent3176689 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherVysoká škola báňská - Technická univerzita Ostravacs
dc.subjectStock Marketen
dc.subjectData Miningen
dc.subjectMachine Learningen
dc.subjectFeature Selectionen
dc.subjectTechnical and Fundamental Features.en
dc.subjectStock Marketcs
dc.subjectData Miningcs
dc.subjectMachine Learningcs
dc.subjectFeature Selectioncs
dc.subjectTechnical and Fundamental Features.cs
dc.title"Technická a fundamentální analýza pro predikci akciového trhu pomocí dolování dat"en
dc.title.alternativeTechnical and Fundamental Features Analysis for Stock Market Prediction with Data Mining Methodscs
dc.typeDisertační prácecs
dc.identifier.signature202000014
dc.identifier.locationÚK/Sklad diplomových prací
dc.contributor.refereeStádník, Bohumil
dc.contributor.refereeKresta, Aleš
dc.contributor.refereeBranda, Martin
dc.date.accepted2019-09-02
dc.thesis.degree-namePh.D.
dc.thesis.degree-levelDoktorský studijní programcs
dc.thesis.degree-grantorVysoká škola báňská - Technická univerzita Ostrava. Ekonomická fakultacs
dc.description.department154 - Katedra financícs
dc.thesis.degree-programHospodářská politika a správacs
dc.thesis.degree-branchFinancecs
dc.description.resultvyhovělcs
dc.identifier.senderS2751
dc.identifier.thesisBAR0439_EKF_P6202_6202V010_2019
dc.rights.accessopenAccess


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam