Zobrazit minimální záznam

dc.contributor.authorVantuch, Tomáš
dc.contributor.authorPrílepok, Michal
dc.contributor.authorFulneček, Jan
dc.contributor.authorHrbáč, Roman
dc.contributor.authorMišák, Stanislav
dc.date.accessioned2019-09-26T12:44:33Z
dc.date.available2019-09-26T12:44:33Z
dc.date.issued2019
dc.identifier.citationEnergies. 2019, vol. 12, issue 11, art. no. 2148.cs
dc.identifier.issn1996-1073
dc.identifier.urihttp://hdl.handle.net/10084/138774
dc.description.abstractHigh impedance faults of medium voltage overhead lines with covered conductors can be identified by the presence of partial discharges. Despite it is a subject of research for more than 60 years, online partial discharges detection is always a challenge, especially in environment with heavy background noise. In this paper, a new approach for partial discharge pattern recognition is presented. All results were obtained on data, acquired from real 22 kV medium voltage overhead power line with covered conductors. The proposed method is based on a text compression algorithm and it serves as a signal similarity estimation, applied for the first time on partial discharge pattern. Its relevancy is examined by three different variations of classification model. The improvement gained on an already deployed model proves its quality.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesEnergiescs
dc.relation.urihttp://doi.org/10.3390/en12112148cs
dc.rights© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectLempel-Ziv complexitycs
dc.subjecttext compressioncs
dc.subjecthigh impedance fault detectioncs
dc.subjectoverhead linescs
dc.subjectcovered conductorcs
dc.subjectpartial dischargescs
dc.titleTowards the text compression based feature extraction in high impedance fault detectioncs
dc.typearticlecs
dc.identifier.doi10.3390/en12112148
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume12cs
dc.description.issue11cs
dc.description.firstpageart. no. 2148cs
dc.identifier.wos000472635900115


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.