Zobrazit minimální záznam

dc.contributor.authorŘíha, Lubomír
dc.contributor.authorMerta, Michal
dc.contributor.authorVavřík, Radim
dc.contributor.authorBrzobohatý, Tomáš
dc.contributor.authorMarkopoulos, Alexandros
dc.contributor.authorMeca, Ondřej
dc.contributor.authorVysocký, Ondřej
dc.contributor.authorKozubek, Tomáš
dc.contributor.authorVondrák, Vít
dc.date.accessioned2019-10-04T06:29:09Z
dc.date.available2019-10-04T06:29:09Z
dc.date.issued2019
dc.identifier.citationInternational Journal of High Performance Computing Applications. 2019, vol. 33, issue 4, p. 660-677.cs
dc.identifier.issn1094-3420
dc.identifier.issn1741-2846
dc.identifier.urihttp://hdl.handle.net/10084/138802
dc.description.abstractIn this article, we present the ExaScale PaRallel finite element tearing and interconnecting SOlver (ESPRESO) finite element method (FEM) library, which includes an FEM toolbox with interfaces to professional and open-source simulation tools, and a massively parallel hybrid total finite element tearing and interconnecting (HTFETI) solver which can fully utilize the Oak Ridge Leadership Computing Facility Titan supercomputer and achieve superlinear scaling. This article presents several new techniques for finite element tearing and interconnecting (FETI) solvers designed for efficient utilization of supercomputers with a focus on (i) performance—we present a fivefold reduction of solver runtime for the Laplace equation by redesigning the FETI solver and offloading the key workload to the accelerator. We compare Intel Xeon Phi 7120p and Tesla K80 and P100 accelerators to Intel Xeon E5-2680v3 and Xeon Phi 7210 central processing units; and (ii) memory efficiency—we present two techniques which increase the efficiency of the HTFETI solver 1.8 times and push the limits of the largest possible problem ESPRESO that can solve from 124 to 223 billion unknowns for problems with unstructured meshes. Finally, we show that by dynamically tuning hardware parameters, we can reduce energy consumption by up to 33%.cs
dc.language.isoencs
dc.publisherSagecs
dc.relation.ispartofseriesInternational Journal of High Performance Computing Applicationscs
dc.relation.urihttp://doi.org/10.1177/1094342018798452cs
dc.rightsCopyright © 2019, © SAGE Publicationscs
dc.subjectfinite element methodcs
dc.subjecthybrid total finite element tearing and interconnectingcs
dc.subjectgraphics processing unitcs
dc.subjectXeon Phics
dc.subjectKnights Cornercs
dc.subjectKnights Landingcs
dc.subjectmassively parallelcs
dc.subjectsparse linear solvercs
dc.titleA massively parallel and memory-efficient FEM toolbox with a hybrid total FETI solver with accelerator supportcs
dc.typearticlecs
dc.identifier.doi10.1177/1094342018798452
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume33cs
dc.description.issue4cs
dc.description.lastpage677cs
dc.description.firstpage660cs
dc.identifier.wos000471881700007


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam