Zobrazit minimální záznam

dc.contributor.authorKačmařík, Michal
dc.contributor.authorDouša, Jan
dc.contributor.authorZus, Florian
dc.contributor.authorVáclavovic, Pavel
dc.contributor.authorBalidakis, Kyriakos
dc.contributor.authorDick, Galina
dc.contributor.authorWickert, Jens
dc.date.accessioned2019-10-04T06:39:30Z
dc.date.available2019-10-04T06:39:30Z
dc.date.issued2019
dc.identifier.citationAnnales Geophysicae. 2019, vol. 37, issue 3, p. 429-446.cs
dc.identifier.issn0992-7689
dc.identifier.issn1432-0576
dc.identifier.urihttp://hdl.handle.net/10084/138803
dc.description.abstractAn analysis of processing settings impacts on estimated tropospheric gradients is presented. The study is based on the benchmark data set collected within the COST GNSS4SWEC action with observations from 430 Global Navigation Satellite Systems (GNSS) reference stations in central Europe for May and June 2013. Tropospheric gradients were estimated in eight different variants of GNSS data processing using precise point positioning (PPP) with the G-Nut/Tefnut software. The impacts of the gradient mapping function, elevation cut-off angle, GNSS constellation, observation elevation-dependent weighting and real-time versus post-processing mode were assessed by comparing the variants by each to other and by evaluating them with respect to tropospheric gradients derived from two numerical weather models (NWMs). Tropospheric gradients estimated in post-processing GNSS solutions using final products were in good agreement with NWM outputs. The quality of high-resolution gradients estimated in (near-)real-time PPP analysis still remains a challenging task due to the quality of the real-time orbit and clock corrections. Comparisons of GNSS and NWM gradients suggest the 3 degrees elevation angle cut-off and GPS+GLONASS constellation for obtaining optimal gradient estimates provided precise models for antenna-phase centre offsets and variations, and tropospheric mapping functions are applied for low-elevation observations. Finally, systematic errors can affect the gradient components solely due to the use of different gradient mapping functions, and still depending on observation elevation-dependent weighting. A latitudinal tilting of the troposphere in a global scale causes a systematic difference of up to 0.3 mm in the north-gradient component, while large local gradients, usually pointing in a direction of increasing humidity, can cause differences of up to 1.0 mm (or even more in extreme cases) in any component depending on the actual direction of the gradient. Although the Bar-Sever gradient mapping function provided slightly better results in some aspects, it is not possible to give any strong recommendation on the gradient mapping function selection.cs
dc.language.isoencs
dc.publisherCopernicuscs
dc.relation.ispartofseriesAnnales Geophysicaecs
dc.relation.urihttps://doi.org/10.5194/angeo-37-429-2019cs
dc.rights© Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.titleSensitivity of GNSS tropospheric gradients to processing optionscs
dc.typearticlecs
dc.identifier.doi10.5194/angeo-37-429-2019
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume37cs
dc.description.issue3cs
dc.description.lastpage446cs
dc.description.firstpage429cs
dc.identifier.wos000472078700001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.