dc.contributor.author | Genčev, Marian | |
dc.date.accessioned | 2019-10-07T12:08:39Z | |
dc.date.available | 2019-10-07T12:08:39Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Journal of Number Theory. 2019, vol. 205, p. 124-147. | cs |
dc.identifier.issn | 0022-314X | |
dc.identifier.issn | 1096-1658 | |
dc.identifier.uri | http://hdl.handle.net/10084/138813 | |
dc.description.abstract | The purpose of this paper is a study of the general finite sums
Phi N,d(K) := Sigma(N >= n1 >=...>= nk >= 1) Pi(K)(j=1) A (inverted right perpendicular nj/d inverted left perpendicular), d is an element of N,
that generalize the truncated multiple harmonic sums zeta(star)(N)({s}(K)) corresponding to d = 1 and A(n) = 1/n(s) with s is an element of N. Surprisingly, when specializing our general transformation result concerning Phi(dN,d)(K), such a type of finite sums can be used for generating and closed-form evaluation of new linear combinations of multiple Hurwitz zeta-star values of the form
Sigma(s proves K max(s)<= d) zeta(star) (cs; a). Pi(l(s))(r=1) ((-1)(sr-1).(d s(r))),
assuming (a, c, d, K) is an element of R x N-3 with a > -1, c > 1, where the sum is extended over all compositions of K with maximal part not exceeding d. | cs |
dc.language.iso | en | cs |
dc.publisher | Elsevier | cs |
dc.relation.ispartofseries | Journal of Number Theory | cs |
dc.relation.uri | http://doi.org/10.1016/j.jnt.2019.05.003 | cs |
dc.rights | © 2019 Elsevier Inc. All rights reserved. | cs |
dc.subject | multiple zeta-star values | cs |
dc.subject | sum transformations | cs |
dc.subject | convolution | cs |
dc.subject | partitions | cs |
dc.subject | Bernoulli polynomials | cs |
dc.subject | Euler polynomials | cs |
dc.title | On some weighted sum formulas involving general multiple zeta-type series | cs |
dc.type | article | cs |
dc.identifier.doi | 10.1016/j.jnt.2019.05.003 | |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 205 | cs |
dc.description.lastpage | 147 | cs |
dc.description.firstpage | 124 | cs |
dc.identifier.wos | 000483456600007 | |