Zobrazit minimální záznam

dc.contributor.authorGenčev, Marian
dc.date.accessioned2019-10-07T12:08:39Z
dc.date.available2019-10-07T12:08:39Z
dc.date.issued2019
dc.identifier.citationJournal of Number Theory. 2019, vol. 205, p. 124-147.cs
dc.identifier.issn0022-314X
dc.identifier.issn1096-1658
dc.identifier.urihttp://hdl.handle.net/10084/138813
dc.description.abstractThe purpose of this paper is a study of the general finite sums Phi N,d(K) := Sigma(N >= n1 >=...>= nk >= 1) Pi(K)(j=1) A (inverted right perpendicular nj/d inverted left perpendicular), d is an element of N, that generalize the truncated multiple harmonic sums zeta(star)(N)({s}(K)) corresponding to d = 1 and A(n) = 1/n(s) with s is an element of N. Surprisingly, when specializing our general transformation result concerning Phi(dN,d)(K), such a type of finite sums can be used for generating and closed-form evaluation of new linear combinations of multiple Hurwitz zeta-star values of the form Sigma(s proves K max(s)<= d) zeta(star) (cs; a). Pi(l(s))(r=1) ((-1)(sr-1).(d s(r))), assuming (a, c, d, K) is an element of R x N-3 with a > -1, c > 1, where the sum is extended over all compositions of K with maximal part not exceeding d.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesJournal of Number Theorycs
dc.relation.urihttp://doi.org/10.1016/j.jnt.2019.05.003cs
dc.rights© 2019 Elsevier Inc. All rights reserved.cs
dc.subjectmultiple zeta-star valuescs
dc.subjectsum transformationscs
dc.subjectconvolutioncs
dc.subjectpartitionscs
dc.subjectBernoulli polynomialscs
dc.subjectEuler polynomialscs
dc.titleOn some weighted sum formulas involving general multiple zeta-type seriescs
dc.typearticlecs
dc.identifier.doi10.1016/j.jnt.2019.05.003
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume205cs
dc.description.lastpage147cs
dc.description.firstpage124cs
dc.identifier.wos000483456600007


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam