Zobrazit minimální záznam

dc.contributor.authorZapletal, Jan
dc.contributor.authorBouchala, Jiří
dc.date.accessioned2019-11-25T14:32:31Z
dc.date.available2019-11-25T14:32:31Z
dc.date.issued2019
dc.identifier.citationComputers & Mathematics with Applications. 2019, vol. 78, issue 9, special issue, p. 2911-2932.cs
dc.identifier.issn0898-1221
dc.identifier.issn1873-7668
dc.identifier.urihttp://hdl.handle.net/10084/138980
dc.description.abstractIn the paper we consider a treatment of Bernoulli type shape optimization problems in three dimensions by the combination of the boundary element method and the hierarchical algorithm based on the subdivision surfaces. After proving the existence of the solution on the continuous level we discretize the free part of the surface by a hierarchy of control meshes allowing to separate the mesh necessary for the numerical analysis and the choice of design parameters. During the optimization procedure the mesh is updated starting from its coarse representation and refined by adding design variables on finer levels. This approach serves as a globalization strategy and prevents geometry oscillations without any need for remeshing. We present numerical experiments demonstrating the capabilities of the proposed algorithm.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesComputers & Mathematics with Applicationscs
dc.relation.urihttps://doi.org/10.1016/j.camwa.2019.02.015cs
dc.rights© 2019 Elsevier Ltd. All rights reserved.cs
dc.subjectBernoulli problemcs
dc.subjectshape optimizationcs
dc.subjectsubdivision surfacescs
dc.subjectboundary element methodcs
dc.titleShape optimization and subdivision surface based approach to solving 3D Bernoulli problemscs
dc.typearticlecs
dc.identifier.doi10.1016/j.camwa.2019.02.015
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume78cs
dc.description.issue9cs
dc.description.lastpage2932cs
dc.description.firstpage2911cs
dc.identifier.wos000491624900006


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam