Zobrazit minimální záznam

dc.contributor.authorHozman, Jiří
dc.contributor.authorTichý, Tomáš
dc.contributor.authorVlasák, Miloslav
dc.date.accessioned2019-11-26T14:02:30Z
dc.date.available2019-11-26T14:02:30Z
dc.date.issued2019
dc.identifier.citationApplications of Mathematics. 2019, vol. 64, issue 5, p. 501-530.cs
dc.identifier.issn0862-7940
dc.identifier.issn1572-9109
dc.identifier.urihttp://hdl.handle.net/10084/138985
dc.description.abstractUnder real market conditions, there exist many cases when it is inevitable to adopt numerical approximations of option prices due to non-existence of analytical formulae. Obviously, any numerical technique should be tested for the cases when the analytical solution is well known. The paper is devoted to the discontinuous Galerkin method applied to European option pricing under the Merton jump-diffusion model, when the evolution of the asset prices is driven by a Levy process with finite activity. The valuation of options under such a model with lognormally distributed jumps requires solving a parabolic partial integro-differential equation which involves both the integrals and the derivatives of the unknown pricing function. The integral term related to jumps leads to new theoretical and numerical issues regarding the solving of the pricing equation in comparison with the standard approach for the Black-Scholes equation. Here we adopt the idea of the relatively modern technique that the integral terms in Merton-type models can be viewed as solutions of proper differential equations, which can be accurately solved in a simple way. For practical purposes of numerical pricing of options in such models we propose a two-stage implicit-explicit scheme arising from the discontinuous piecewise polynomial approximation, i.e., the discontinuous Galerkin method. This solution procedure is accompanied with theoretical results and discussed within the numerical results on reference benchmarks.cs
dc.language.isoencs
dc.publisherAkademie věd České republiky. Matematický ústavcs
dc.relation.ispartofseriesApplications of Mathematicscs
dc.relation.urihttps://doi.org/10.21136/AM.2019.0305-18cs
dc.rights© Mathematical Institute, Academy of Sciences of Cz 2019cs
dc.subjectoption pricingcs
dc.subjectMerton jump-diffusion modelcs
dc.subjectintegro-differential equationcs
dc.subjectdiscontinuous Galerkin methodcs
dc.subjectsemi-implicit discretizationcs
dc.subjecta priori error estimatescs
dc.titleDG method for pricing European options under Merton jump-diffusion modelcs
dc.typearticlecs
dc.identifier.doi10.21136/AM.2019.0305-18
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume64cs
dc.description.issue5cs
dc.description.lastpage530cs
dc.description.firstpage501cs
dc.identifier.wos000491496200002


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam