Zobrazit minimální záznam

dc.contributor.authorKučera, Radek
dc.contributor.authorMotyčková, Kristina
dc.contributor.authorMarkopoulos, Alexandros
dc.contributor.authorHaslinger, Jaroslav
dc.date.accessioned2019-12-16T07:32:48Z
dc.date.available2019-12-16T07:32:48Z
dc.date.issued2020
dc.identifier.citationOptimization Methods and Software. 2020, vol. 35, issue 1, p. 65-86.cs
dc.identifier.issn1055-6788
dc.identifier.issn1029-4937
dc.identifier.urihttp://hdl.handle.net/10084/139046
dc.description.abstractThe semi-smooth Newton method for solving discretized contact problems with Tresca friction in three-dimensional space is analysed. The slanting function is approximated to get symmetric inner linear systems. The primal-dual algorithm is transformed into the dual one so that the conjugate gradient method can be used. The R-linear convergence rate is proved for an inexact globally convergent variant of the method. Numerical experiments conclude the paper.cs
dc.language.isoencs
dc.publisherTaylor & Franciscs
dc.relation.ispartofseriesOptimization Methods and Softwarecs
dc.relation.urihttps://doi.org/10.1080/10556788.2018.1556659cs
dc.subjectcontact problemcs
dc.subjectTresca frictioncs
dc.subjectsemi-smooth Newton methodcs
dc.subjectconjugate gradient methodcs
dc.subjectgradient projectioncs
dc.subjectconvergence ratecs
dc.titleOn the inexact symmetrized globally convergent semi-smooth Newton method for 3D contact problems with Tresca friction: the R-linear convergence ratecs
dc.typearticlecs
dc.identifier.doi10.1080/10556788.2018.1556659
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume35cs
dc.description.issue1cs
dc.description.lastpage86cs
dc.description.firstpage65cs
dc.identifier.wos000496996100004


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam