dc.contributor.author | Kučera, Radek | |
dc.contributor.author | Motyčková, Kristina | |
dc.contributor.author | Markopoulos, Alexandros | |
dc.contributor.author | Haslinger, Jaroslav | |
dc.date.accessioned | 2019-12-16T07:32:48Z | |
dc.date.available | 2019-12-16T07:32:48Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Optimization Methods and Software. 2020, vol. 35, issue 1, p. 65-86. | cs |
dc.identifier.issn | 1055-6788 | |
dc.identifier.issn | 1029-4937 | |
dc.identifier.uri | http://hdl.handle.net/10084/139046 | |
dc.description.abstract | The semi-smooth Newton method for solving discretized contact problems with Tresca friction in three-dimensional space is analysed. The slanting function is approximated to get symmetric inner linear systems. The primal-dual algorithm is transformed into the dual one so that the conjugate gradient method can be used. The R-linear convergence rate is proved for an inexact globally convergent variant of the method. Numerical experiments conclude the paper. | cs |
dc.language.iso | en | cs |
dc.publisher | Taylor & Francis | cs |
dc.relation.ispartofseries | Optimization Methods and Software | cs |
dc.relation.uri | https://doi.org/10.1080/10556788.2018.1556659 | cs |
dc.subject | contact problem | cs |
dc.subject | Tresca friction | cs |
dc.subject | semi-smooth Newton method | cs |
dc.subject | conjugate gradient method | cs |
dc.subject | gradient projection | cs |
dc.subject | convergence rate | cs |
dc.title | On the inexact symmetrized globally convergent semi-smooth Newton method for 3D contact problems with Tresca friction: the R-linear convergence rate | cs |
dc.type | article | cs |
dc.identifier.doi | 10.1080/10556788.2018.1556659 | |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 35 | cs |
dc.description.issue | 1 | cs |
dc.description.lastpage | 86 | cs |
dc.description.firstpage | 65 | cs |
dc.identifier.wos | 000496996100004 | |