Zobrazit minimální záznam

dc.contributor.authorGuo, Yuanyuan
dc.contributor.authorZhang, Shihao
dc.contributor.authorBeyerlein, Irene J.
dc.contributor.authorLegut, Dominik
dc.contributor.authorShang, Shun-Li
dc.contributor.authorLiu, Zhe
dc.contributor.authorZhang, Ruifeng
dc.date.accessioned2019-12-20T07:25:44Z
dc.date.available2019-12-20T07:25:44Z
dc.date.issued2019
dc.identifier.citationActa Materialia. 2019, vol. 181, p. 423-438.cs
dc.identifier.issn1359-6454
dc.identifier.issn1873-2453
dc.identifier.urihttp://hdl.handle.net/10084/139051
dc.description.abstractZn-based and Mg-based alloys have been considered highly promising biodegradable materials for cardiovascular stent applications due to their excellent biocompatibility and moderate in vitro degradation rates. However, their strength is too poor for use in cardiovascular stents. The strength of these metals can be related to the sizes of the dislocation cores and the threshold stresses needed to activate slip, i.e., the Peierls stress. Using density functional theory (DFT) and an ab initio-informed semi-discrete PeierlsNabarro model, we investigate the coupled effect of the solute element and mechanical straining on the stacking fault energy, basal dislocation core structures and Peierls stresses in both Zn-based and Mg-based alloys. We consider several biocompatible solute elements, Li, Al, Mn, Fe, Cu, Mg and Zn, in the same atomic concentrations. The combined analysis here suggests some elements, like Fe, can potentially enhance strength in both Zn-based and Mg-based alloys, while other elements, like Li, can lead to opposing effects in Zn and Mg. We show that the effect of solute strengthening and longitudinal straining on SFEs is much stronger for the Zn-based alloys than for the Mg-based alloys. DFT investigations on electronic structure and bond lengths reveal a coupled chemical-mechanical effect of solute and strain on electronic polarization, charge transfer, and bonding strength, which can explain the weak mechanical effect on Zn-based alloys and the variable strengthening effect among these solutes. These findings can provide critical information needed in solute selection in Zn-based and Mg-based alloy design for biomedical applications.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesActa Materialiacs
dc.relation.urihttps://doi.org/10.1016/j.actamat.2019.09.059cs
dc.rights© 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.cs
dc.subjectzinc alloycs
dc.subjectstrain effectcs
dc.subjectstacking fault energycs
dc.subjectdislocation core structurecs
dc.subjectPeierls stresscs
dc.titleSynergetic effects of solute and strain in biocompatible Zn-based and Mg-based alloyscs
dc.typearticlecs
dc.identifier.doi10.1016/j.actamat.2019.09.059
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume181cs
dc.description.lastpage438cs
dc.description.firstpage423cs
dc.identifier.wos000498749300036


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam