Show simple item record

dc.contributor.authorUrban, Zbyněk
dc.contributor.authorVolná, Jana
dc.date.accessioned2020-01-14T07:33:47Z
dc.date.available2020-01-14T07:33:47Z
dc.date.issued2019
dc.identifier.citationInternational Journal of Geometric Methods in Modern Physics. 2019, vol. 16, special issue, art. no. 1950106.cs
dc.identifier.issn0219-8878
dc.identifier.issn1793-6977
dc.identifier.urihttp://hdl.handle.net/10084/139060
dc.description.abstractThe exactness equation for Lepage 2-forms, associated with variational systems of ordinary differential equations on smooth manifolds, is analyzed with the aim to construct a concrete global variational principle. It is shown that locally variational systems defined by homogeneous functions of degree c not equal 0, 1 are automatically globally variational. A new constructive method of finding a global Lagrangian is described for these systems, which include for instance the geodesic equations in Riemann and Finsler geometry.cs
dc.language.isoencs
dc.publisherWorld Scientific Publishingcs
dc.relation.ispartofseriesInternational Journal of Geometric Methods in Modern Physicscs
dc.relation.urihttps://doi.org/10.1142/S0219887819501068cs
dc.subjectvariational differential equationcs
dc.subjectLagrangiancs
dc.subjectEuler-Lagrange expressionscs
dc.subjectHelmholtz conditionscs
dc.subjectLepage 2-formcs
dc.subjecthomogeneous functioncs
dc.titleExactness of Lepage 2-forms and globally variational differential equationscs
dc.typearticlecs
dc.identifier.doi10.1142/S0219887819501068
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume16cs
dc.description.firstpageart. no. 1950106cs
dc.identifier.wos000500955000009


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record