Zobrazit minimální záznam

dc.contributor.authorOpěla, Petr
dc.contributor.authorKawulok, Petr
dc.contributor.authorKawulok, Rostislav
dc.contributor.authorKotásek, Ondřej
dc.contributor.authorBuček, Pavol
dc.contributor.authorOndrejkovič, Karol
dc.date.accessioned2020-01-30T07:55:04Z
dc.date.available2020-01-30T07:55:04Z
dc.date.issued2019
dc.identifier.citationMetals. 2019, vol. 9, issue 11, art. no. 1218.cs
dc.identifier.issn2075-4701
dc.identifier.urihttp://hdl.handle.net/10084/139135
dc.description.abstractProcessing maps embody a supportive tool for the optimization of hot forming processes. In the present work, based on the dynamic material model, the processing maps of 10CrMo9-10 low-alloy steel were assembled with the use of two flow curve datasets. The first one was obtained on the basis of uniaxial hot compression tests in a temperature range of 1073-1523 K and a strain rate range of 0.1-100 s(-1). This experimental dataset was subsequently approximated by means of an artificial neural network approach. Based on this approximation, the second dataset was calculated. An important finding was that the additional dataset contributed significantly to improving the informative ability of the assembled processing maps in terms of revealing potentially inappropriate forming conditions.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesMetalscs
dc.relation.urihttps://doi.org/10.3390/met9111218cs
dc.rights© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectprocessing mapscs
dc.subjecthot flow curvescs
dc.subjectapproximationcs
dc.subjectartificial neural networkscs
dc.titleExtension of experimentally assembled processing maps of 10CrMo9-10 steel via a predicted dataset and the influence on overall informative possibilitiescs
dc.typearticlecs
dc.identifier.doi10.3390/met9111218
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume9cs
dc.description.issue11cs
dc.description.firstpageart. no. 1218cs
dc.identifier.wos000504411600086


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.