Zobrazit minimální záznam

dc.contributor.authorZhang, Shihao
dc.contributor.authorZhang, Qi
dc.contributor.authorLiu, Zhaorui
dc.contributor.authorLegut, Dominik
dc.contributor.authorGermann, Timothy Clark
dc.contributor.authorVeprek, Stan
dc.contributor.authorZhang, Haijun
dc.contributor.authorZhang, Ruifeng
dc.date.accessioned2020-02-17T09:21:42Z
dc.date.available2020-02-17T09:21:42Z
dc.date.issued2020
dc.identifier.citationACS Applied Materials & Interfaces. 2020, vol. 12, issue 3, p. 4135-4142.cs
dc.identifier.issn1944-8244
dc.identifier.issn1944-8252
dc.identifier.urihttp://hdl.handle.net/10084/139161
dc.description.abstractA combinational effect of nanostructured crystallites and it-bonded interfaces is much attractive in solving the conflict between strength/hardness and toughness to design extrinsically superhard materials with enhanced fracture toughness and/or other properties such as tunable electronic properties. In the present work, taking the experimentally observed pi-bonded interfaces in nanostructured diamond as the prototype, we theoretically investigated their stabilities, electronic structures, and mechanical strengths with special consideration of the size effect of nanocrystallites or nanolayers. It is unprecedentedly found that the pi-bonded interfaces exhibit tunable electronic semiconducting properties, superior fracture toughness, and anomalously large creep-like plasticity at the cost of minor losses in strength/hardness; such unique combination is uncovered to be attributed to the ductile bridging effect of the sp(2) bonds across the pi-bonded interface that dominates the localized plastic flow channel. As the length scale of nanocrystallites/nanolayers is lower than a critical value, however, the first failure occurring inside nanocrystallites/ nanolayers features softening and embrittling. These findings not only provide a novel insight into the unique strengthening and toughening origin observed in ultrahard nanostructured diamonds consisting of nanotwins, nanocomposites, and nanocrystallites but also highlight a unique pathway by combining the nanostructured crystallites and the strongly bonded interface to design the novel superhard materials with superior toughness.cs
dc.language.isoencs
dc.publisherAmerican Chemical Societycs
dc.relation.ispartofseriesACS Applied Materials & Interfacescs
dc.relation.urihttps://doi.org/10.1021/acsami.9b19725cs
dc.rightsCopyright © 2020 American Chemical Societycs
dc.subjectpi-bonded interfacecs
dc.subjectplastic flow channelcs
dc.subjectnanostructured diamondcs
dc.subjectstrength and toughnesscs
dc.subjectmolecular dynamics simulationcs
dc.titleUltrastrong pi-bonded interface as ductile plastic flow channel in nanostructured diamondcs
dc.typearticlecs
dc.identifier.doi10.1021/acsami.9b19725
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume12cs
dc.description.issue3cs
dc.description.lastpage4142cs
dc.description.firstpage4135cs
dc.identifier.wos000509428300090


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam