dc.contributor.author | Arapan, Sergiu | |
dc.contributor.author | Nieves, Pablo | |
dc.contributor.author | Herper, Heike C. | |
dc.contributor.author | Legut, Dominik | |
dc.date.accessioned | 2020-02-19T06:54:32Z | |
dc.date.available | 2020-02-19T06:54:32Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Physical Review B. 2020, vol. 101, issue 1, art. no. 014426. | cs |
dc.identifier.issn | 2469-9950 | |
dc.identifier.issn | 2469-9969 | |
dc.identifier.uri | http://hdl.handle.net/10084/139168 | |
dc.description.abstract | In this paper, we perform a systematic calculation of the Fe-Ta phase diagram to discover hard magnetic phases. By using structure prediction methods based on evolutionary algorithms, we identify two energetically stable magnetic structures: a tetragonal Fe3Ta (space group 122) and a cubic Fe5Ta (space group 216) binary phase. The tetragonal structure is estimated to have both high saturation magnetization (mu M-0(s) = 1.14 T) and magnetocrystalline anisotropy (K-1 = 2.17 MJ/m(3)) suitable for permanent magnet applications. The high-throughput screening of magnetocrystalline anisotropy also reveals two low-energy metastable hard magnetic phases: Fe5Ta2 (space group 156) and Fe6Ta (space group 194), that may exhibit intrinsic magnetic properties comparable to SmCo5 and Nd2Fe14B, respectively. | cs |
dc.language.iso | en | cs |
dc.publisher | American Physical Society | cs |
dc.relation.ispartofseries | Physical Review B | cs |
dc.relation.uri | https://doi.org/10.1103/PhysRevB.101.014426 | cs |
dc.rights | © 2020 American Physical Society | cs |
dc.title | Computational screening of Fe-Ta hard magnetic phases | cs |
dc.type | article | cs |
dc.identifier.doi | 10.1103/PhysRevB.101.014426 | |
dc.type.status | Peer-reviewed | cs |
dc.description.source | Web of Science | cs |
dc.description.volume | 101 | cs |
dc.description.issue | 1 | cs |
dc.description.firstpage | art. no. 014426 | cs |
dc.identifier.wos | 000508448000004 | |