Zobrazit minimální záznam

dc.contributor.authorVučetić, Miljan
dc.contributor.authorHudec, Miroslav
dc.contributor.authorBožilović, Boško
dc.date.accessioned2020-03-05T09:53:12Z
dc.date.available2020-03-05T09:53:12Z
dc.date.issued2020
dc.identifier.citationEngineering Applications of Artificial Intelligence. 2020, vol. 88, special issue, art. no. UNSP 103395.cs
dc.identifier.issn0952-1976
dc.identifier.issn1873-6769
dc.identifier.urihttp://hdl.handle.net/10084/139343
dc.description.abstractKnowledge discovery from databases copes with several problems including the heterogeneity of data and interpreting the solution in an understandable and convenient form for domain experts. Fuzzy logic approaches based on the computing with words paradigm are very appealing since they offer the possibility to express useful knowledge from a large volume of data by linguistic terms, which are easily understandable for diverse users. In this paper, the novel descriptive data mining algorithm based on fuzzy functional dependencies has been proposed. In the first step, data are fuzzified, which ensures the same manipulation of crisp and fuzzy data. The data mining step is based on revealing fuzzy functional dependencies among considered attributes. In the final step, the mined knowledge is interpreted linguistically by the fuzzy modifiers and quantifiers. The proposed algorithm has been explained on illustrative data and tested on real-world dataset. Finally, its benefits, weak points and possible future research topics are discussed.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesEngineering Applications of Artificial Intelligencecs
dc.relation.urihttps://doi.org/10.1016/j.engappai.2019.103395cs
dc.rights© 2019 Elsevier Ltd. All rights reserved.cs
dc.subjectknowledge discoverycs
dc.subjectdata miningcs
dc.subjectfuzzy functional dependencycs
dc.subjectlinguistic interpretationcs
dc.subjectfuzzy logiccs
dc.subjectfuzzy adverbcs
dc.titleFuzzy functional dependencies and linguistic interpretations employed in knowledge discovery tasks from relational databasescs
dc.typearticlecs
dc.identifier.doi10.1016/j.engappai.2019.103395
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume88cs
dc.description.firstpageart. no. UNSP 103395cs
dc.identifier.wos000510523600019


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam