Zobrazit minimální záznam

dc.contributor.authorBui, Quang-Thinh
dc.contributor.authorVo, Bay
dc.contributor.authorDo, Hoang-Anh Nguyen
dc.contributor.authorHung, Nguyen Quoc Viet
dc.contributor.authorSnášel, Václav
dc.date.accessioned2020-03-06T06:43:37Z
dc.date.available2020-03-06T06:43:37Z
dc.date.issued2020
dc.identifier.citationKnowledge-Based Systems. 2020, vol. 189, art. no. 105107.cs
dc.identifier.issn0950-7051
dc.identifier.issn1872-7409
dc.identifier.urihttp://hdl.handle.net/10084/139346
dc.description.abstractUsing topology in data analysis, known as Topological Data Analysis (TDA), is now a promising new area of data mining research. One of the important and foundational tools of TDA is the Mapper algorithm. During the past two decades, this algorithm has proven its useful and robust abilities in extracting insights and meaningful information from high-dimensional datasets. Nevertheless, several alterations in the choices of parameters, such as lens, cover and clustering, can be used to develop this algorithm. In this paper, we propose the F-Mapper algorithm, based on the foundation of the Mapper algorithm, to solve the problem of automating when dividing cover intervals with an arbitrary percentage of overlap. To clarify the efficiency of this enhanced algorithm, experiments were carried out on three datasets, including the Unit Circle, Reaven and Miller Diabetes, and NKI Breast Cancer. The experimental results will be analyzed and compared with those of the original method, the Mapper algorithm, through the output image and silhouette coefficient score in the evaluation of clustering.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesKnowledge-Based Systemscs
dc.relation.urihttps://doi.org/10.1016/j.knosys.2019.105107cs
dc.rights© 2019 Elsevier B.V. All rights reserved.cs
dc.subjecttopological data analysiscs
dc.subjectMappercs
dc.subjectFuzzy c-Meanscs
dc.subjectF-Mappercs
dc.subjectclusteringcs
dc.titleF-Mapper: A Fuzzy Mapper clustering algorithmcs
dc.typearticlecs
dc.identifier.doi10.1016/j.knosys.2019.105107
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume189cs
dc.description.firstpageart. no. 105107cs
dc.identifier.wos000510955100012


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam