Zobrazit minimální záznam

dc.contributor.authorJarraya, Yosra
dc.contributor.authorBouaziz, Souhir
dc.contributor.authorAlimi, Adel M.
dc.contributor.authorAbraham, Ajith
dc.date.accessioned2020-04-13T08:06:10Z
dc.date.available2020-04-13T08:06:10Z
dc.date.issued2020
dc.identifier.citationSoft Computing. 2020, vol. 24, issue 5, p. 3615-3630.cs
dc.identifier.issn1432-7643
dc.identifier.issn1433-7479
dc.identifier.urihttp://hdl.handle.net/10084/139402
dc.description.abstractThis paper presents a new tree hierarchical representation of type-2 fuzzy systems. The proposed system is called the type-2 hierarchical flexible beta fuzzy system (T2HFBFS) and is trained based on two-phase optimization mechanism. The first optimization step is a multi-objective structural learning phase. This phase is based on the multi-objective extended immune programming algorithm and aims to obtain an improved T2HFBFS structure with good interpretability-accuracy trade-off. The second optimization step is a parameter tuning phase. Using a hybrid evolutionary algorithm, this phase allows the adjustment of antecedent and consequent membership function parameters of the obtained T2HFBFS. By interleaving the two learning steps, an optimal and accurate hierarchical type-2 fuzzy system is derived with the least number of possible rules. The performance of the system is evaluated by conducting case studies for time series prediction problems and high-dimensional classification problems. Results prove that the T2HFBFS could attain superior performance than other existing approaches in terms of achieving high accuracy with a significant rule reduction.cs
dc.language.isoencs
dc.publisherSpringer Naturecs
dc.relation.ispartofseriesSoft Computingcs
dc.relation.urihttp://doi.org/10.1007/s00500-019-04129-6cs
dc.rightsCopyright © 2019, Springer Naturecs
dc.subjecthierarchical designcs
dc.subjecttype-2 fuzzy systemscs
dc.subjectbeta basis functioncs
dc.subjectstructure learningcs
dc.subjectmulti-objective optimizationcs
dc.subjectparameter tuningcs
dc.titleHierarchical fuzzy design by a multi-objective evolutionary hybrid approachcs
dc.typearticlecs
dc.identifier.doi10.1007/s00500-019-04129-6
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume24cs
dc.description.issue5cs
dc.description.lastpage3630cs
dc.description.firstpage3615cs
dc.identifier.wos000518603800034


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam