Zobrazit minimální záznam

dc.contributor.authorKawala-Sterniuk, Aleksandra
dc.contributor.authorPodpora, Michal
dc.contributor.authorPelc, Mariusz
dc.contributor.authorBlaszczyszyn, Monika
dc.contributor.authorEdward Jacek Gorzelańczyk
dc.contributor.authorMartinek, Radek
dc.contributor.authorOžana, Štěpán
dc.date.accessioned2020-04-16T10:52:37Z
dc.date.available2020-04-16T10:52:37Z
dc.date.issued2020
dc.identifier.citationSensors. 2020, vol. 20, issue 3, art. no. 807.cs
dc.identifier.issn1424-8220
dc.identifier.urihttp://hdl.handle.net/10084/139409
dc.description.abstractThis paper covers a brief review of both the advantages and disadvantages of the implementation of various smoothing filters in the analysis of electroencephalography (EEG) data for the purpose of potential medical diagnostics. The EEG data are very prone to the occurrence of various internal and external artifacts and signal distortions. In this paper, three types of smoothing filters were compared: smooth filter, median filter and Savitzky-Golay filter. The authors of this paper compared those filters and proved their usefulness, as they made the analyzed data more legible for diagnostic purposes. The obtained results were promising, however, the studies on finding perfect filtering methods are still in progress.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesSensorscs
dc.relation.urihttp://doi.org/10.3390/s20030807cs
dc.rights© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectelectroencephalographycs
dc.subjectsignal processingcs
dc.subjectsmoothing filterscs
dc.subjectSavitzky–Golay filtercs
dc.titleComparison of smoothing filters in analysis of EEG data for the medical diagnostics purposescs
dc.typearticlecs
dc.identifier.doi10.3390/s20030807
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume20cs
dc.description.issue3cs
dc.description.firstpageart. no. 807cs
dc.identifier.wos000517786200231


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.