Zobrazit minimální záznam

dc.contributor.authorZhang, Minghua
dc.contributor.authorChen, Xiangjun
dc.contributor.authorXiao, Jiewen
dc.contributor.authorTai, Meiqian
dc.contributor.authorLegut, Dominik
dc.contributor.authorShi, Jianchao
dc.contributor.authorQu, Jiale
dc.contributor.authorZhang, Qi
dc.contributor.authorLi, Xin
dc.contributor.authorChen, Lan
dc.contributor.authorZhang, Ruifeng
dc.contributor.authorLin, Hong
dc.contributor.authorZhang, Qianfan
dc.date.accessioned2020-04-25T08:56:49Z
dc.date.available2020-04-25T08:56:49Z
dc.date.issued2020
dc.identifier.citationNanoscale. 2020, vol. 12, issue 11, p. 6571-6581.cs
dc.identifier.issn2040-3364
dc.identifier.issn2040-3372
dc.identifier.urihttp://hdl.handle.net/10084/139437
dc.description.abstractInorganic cesium lead halide (CsPbI3) is a promising candidate for next-generation photovoltaic devices, but photoactive alpha-phase CsPbI3 can rapidly transform to non-photoactive yellow delta-CsPbI3 in a humid atmosphere. Here, we report that partial substitution of cesium by the potassium or rubidium element can effectively improve the phase stability against moisture by forming a water-repelling surface layer with Rb/K segregation. Using density functional theory, we found that the water-induced polarization, which triggers the PbI62- octahedron distortion and accelerates the phase transition, can be effectively alleviated by incorporating Rb/K elements. Further exploration of transition states suggests that Rb/K doped surface layers result in a higher activation barrier for water penetration. The electronic structure analysis further reveals that the barrier enhancement originates from the absence of the participation of inner 5p electrons in Rb/K-H2O binding, which induces a much lower energy barrier in pristine CsPbI3. Based on these improvements, the doped perovskites remained in the major alpha-phase after direct exposure to ambient air (RH similar to 30%) for 5 hours, while pristine CsPbI3 showed an irreversible degradation. With the clarified mechanism of enhanced phase stability of Rb/K incorporation, we suggest such a doping method as a promising strategy to be widely applied in the field of photovoltaic devices.cs
dc.language.isoencs
dc.publisherRoyal Society of Chemistrycs
dc.relation.ispartofseriesNanoscalecs
dc.relation.urihttp://doi.org/10.1039/c9nr10548dcs
dc.rights© The Royal Society of Chemistry 2020cs
dc.titleSuppressed phase transition of a Rb/K incorporated inorganic perovskite with a water-repelling surfacecs
dc.typearticlecs
dc.identifier.doi10.1039/c9nr10548d
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume12cs
dc.description.issue11cs
dc.description.lastpage6581cs
dc.description.firstpage6571cs
dc.identifier.wos000522124800035


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam