Zobrazit minimální záznam

dc.contributor.authorAmer, Eslam
dc.contributor.authorZelinka, Ivan
dc.date.accessioned2020-05-18T06:46:59Z
dc.date.available2020-05-18T06:46:59Z
dc.date.issued2020
dc.identifier.citationComputers & Security. 2020, vol. 92, art. no. UNSP 101760.cs
dc.identifier.issn0167-4048
dc.identifier.issn1872-6208
dc.identifier.urihttp://hdl.handle.net/10084/139478
dc.description.abstractMalware API call graph derived from API call sequences is considered as a representative technique to understand the malware behavioral characteristics. However, it is troublesome in practice to build a behavioral graph for each malware. To resolve this issue, we examine how to generate a simple behavioral graph that characterizes malware. In this paper, we introduce the use of word embedding to understand the contextual relationship that exists between API functions in malware call sequences. We also propose a method that segregating individual functions that have similar contextual traits into clusters. Our experimental results prove that there is a significant distinction between malware and goodware call sequences. Based on this distinction, we introduce a new method to detect and predict malware based on the Markov chain. Through modeling the behavior of malware and goodware API call sequences, we generate a semantic transition matrix which depicts the actual relation between API functions. Our models return an average detection precision of 0.990, with a false positive rate of 0.010. We also propose a prediction methodology that predicts whether an API call sequence is malicious or not from the initial API calling functions. Our model returns an average accuracy for the prediction of 0.997. Therefore, we propose an approach that can block malicious payloads instead of detecting them after their post-execution and avoid repairing the damage.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesComputers & Securitycs
dc.relation.urihttp://doi.org/10.1016/j.cose.2020.101760cs
dc.rights© 2020 Elsevier Ltd. All rights reserved.cs
dc.subjectAPI call sequencecs
dc.subjectmalware detectioncs
dc.subjectmalware predictioncs
dc.subjectword embeddingcs
dc.subjectchain sequencecs
dc.titleA dynamic Windows malware detection and prediction method based on contextual understanding of API call sequencecs
dc.typearticlecs
dc.identifier.doi10.1016/j.cose.2020.101760
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume92cs
dc.description.firstpageart. no. UNSP 101760cs
dc.identifier.wos000526984900024


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam