Zobrazit minimální záznam

dc.contributor.authorTomeček, Jan
dc.contributor.authorRachůnková, Irena
dc.contributor.authorBurkotová, Jana
dc.contributor.authorStryja, Jakub
dc.date.accessioned2020-05-18T13:21:09Z
dc.date.available2020-05-18T13:21:09Z
dc.date.issued2020
dc.identifier.citationNonlinear Analysis: Theory, Methods & Applications. 2020, vol. 196, art. no. 111783.cs
dc.identifier.issn0362-546X
dc.identifier.issn1873-5215
dc.identifier.urihttp://hdl.handle.net/10084/139482
dc.description.abstractThe paper deals with the singular differential equation x '' + g(x) = p(t), where g has a weak singularity at x = 0. Sufficient conditions for a coexistence of two types of periodic solutions are presented. The first type is a classical periodic solution which is strictly positive on R and does not reach the singularity. The second type is a bouncing periodic solution which reaches the singularity at isolated points. In particular, we state a constant K > 0 such that there exist at least two 2 pi-periodic bouncing solutions having their maximum less than K and at least one 2 pi-periodic classical solution having its minimum greater than K. The proofs are based on the ideas of the Poincare-Birkhoff Twist Map Theorem and approximation principles.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesNonlinear Analysis: Theory, Methods & Applicationscs
dc.relation.urihttp://doi.org/10.1016/j.na.2020.111783cs
dc.rights© 2020 Elsevier Ltd. All rights reserved.cs
dc.subjectnonnegative periodic solutioncs
dc.subjectsingular IVPcs
dc.subjectimpulsive differential equationcs
dc.subjectgeneralized Lazer-Solimini equationcs
dc.subjectcoexistencecs
dc.subjecttwist map theoremcs
dc.titleCoexistence of bouncing and classical periodic solutions of generalized Lazer-Solimini equationcs
dc.typearticlecs
dc.identifier.doi10.1016/j.na.2020.111783
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume196cs
dc.description.firstpageart. no. 111783cs
dc.identifier.wos000526928200007


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam