Zobrazit minimální záznam

dc.contributor.authorKovacs, Alexander
dc.contributor.authorFischbacher, Johann
dc.contributor.authorGusenbauer, Markus
dc.contributor.authorOezelt, Harald
dc.contributor.authorHerper, Heike C.
dc.contributor.authorVekilova, Olga Yu.
dc.contributor.authorNieves, Pablo
dc.contributor.authorArapan, Sergiu
dc.contributor.authorSchrefl, Thomas
dc.date.accessioned2020-05-19T11:45:58Z
dc.date.available2020-05-19T11:45:58Z
dc.date.issued2020
dc.identifier.citationEngineering. 2020, vol. 6, issue 2, p. 148-153.cs
dc.identifier.issn2095-8099
dc.identifier.issn2096-0026
dc.identifier.urihttp://hdl.handle.net/10084/139492
dc.description.abstractMultiscale simulation is a key research tool in the quest for new permanent magnets. Starting with first principles methods, a sequence of simulation methods can be applied to calculate the maximum possible coercive field and expected energy density product of a magnet made from a novel magnetic material composition. Iron (Fe)-rich magnetic phases suitable for permanent magnets can be found by means of adaptive genetic algorithms. The intrinsic properties computed by ab intro simulations are used as input for micromagnetic simulations of the hysteresis properties of permanent magnets with a realistic structure. Using machine learning techniques, the magnet's structure can be optimized so that the upper limits for coercivity and energy density product for a given phase can be estimated. Structure property relations of synthetic permanent magnets were computed for several candidate hard magnetic phases. The following pairs (coercive field (T), energy density product (kJ.m(-3))) were obtained for iron-tin-antimony (Fe3Sn0.75Sb0.25): (0.49, 290), L1(0) -ordered iron-nickel (L1(0) FeNi): (1, 400), cobalt-iron-tantalum (CoFe6Ta): (0.87, 425), and manganese-aluminum (MnAl): (0.53, 80).cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesEngineeringcs
dc.relation.urihttp://doi.org/10.1016/j.eng.2019.11.006cs
dc.rights© 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectrare-earthcs
dc.subjectpermanent magnetscs
dc.subjectmicromagneticscs
dc.titleComputational design of rare-earth reduced permanent magnetscs
dc.typearticlecs
dc.identifier.doi10.1016/j.eng.2019.11.006
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume6cs
dc.description.issue2cs
dc.description.lastpage153cs
dc.description.firstpage148cs
dc.identifier.wos000525752200010


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2020 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company.