Zobrazit minimální záznam

dc.contributor.authorKrömer, Pavel
dc.contributor.authorPlatoš, Jan
dc.contributor.authorSnášel, Václav
dc.date.accessioned2020-05-20T08:14:12Z
dc.date.available2020-05-20T08:14:12Z
dc.date.issued2020
dc.identifier.citationSwarm and Evolutionary Computation. 2020, vol. 54, art. no. UNSP 100649.cs
dc.identifier.issn2210-6502
dc.identifier.issn2210-6510
dc.identifier.urihttp://hdl.handle.net/10084/139497
dc.description.abstractHalton sequences are d-dimensional quasirandom sequences that fill the d-dimensional hyperspace in a uniform way. They can be used in a variety of applications such as multidimensional integration, uniform sampling, and, e.g., quasi-Monte Carlo simulations. Generalized Halton sequences improve the space-filling properties of original Halton sequences in higher dimensions by digit scrambling. In this work, an evolutionary optimization algorithm, the differential evolution, is used to optimize scrambling permutations of a cl-dimensional generalized Halton sequence so that the discrepancy of the generated point set is minimized.cs
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesSwarm and Evolutionary Computationcs
dc.relation.urihttp://doi.org/10.1016/j.swevo.2020.100649cs
dc.rights© 2020 Elsevier B.V. All rights reserved.cs
dc.subjectdifferential evolutioncs
dc.subjectcombinatorial optimizationcs
dc.subjectqasirandom sequencescs
dc.subjectdiscrepancycs
dc.titleDifferential evolution for the optimization of low-discrepancy generalized Halton sequencescs
dc.typearticlecs
dc.identifier.doi10.1016/j.swevo.2020.100649
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume54cs
dc.description.firstpageart. no. UNSP 100649cs
dc.identifier.wos000528484400009


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam