Zobrazit minimální záznam

dc.contributor.authorVítek, Aleš
dc.contributor.authorArismendi-Arrieta, Daniel J.
dc.contributor.authorŠarmanová, Martina
dc.contributor.authorKalus, René
dc.contributor.authorProsmiti, Rita
dc.date.accessioned2020-06-25T12:20:11Z
dc.date.available2020-06-25T12:20:11Z
dc.date.issued2020
dc.identifier.citationJournal of Physical Chemistry A. 2020, vol. 124, issue 20, p. 4036-4047.cs
dc.identifier.issn1089-5639
dc.identifier.issn1520-5215
dc.identifier.urihttp://hdl.handle.net/10084/139590
dc.description.abstractWe have investigated different approaches to handling parallel-tempering Monte Carlo (PTMC) simulations in the isothermal-isobaric ensemble of molecular cluster/nanoparticle systems for predicting structural phase diagram transitions. We have implemented various methodologies that consist of treating pressure implicitly through its effect on the volume. Thus, the main problem in the simulations under nonzero pressure becomes the volume definition of the finite nonperiodic system, and we considered approaches based on the particles' coordinates. Various volume models, namely container-volume, particle-volume, average-volume, ellipsoids-volume, and convex hull-volume, were employed, and the required corrections for each of them in the Monte Carlo computations were introduced. Finally, we explored the effects of volume/pressure changes for all models on structural phase transitions of a test system, such as the small "icelike" (H2O)(12) water cluster. The temperature and pressure dependence of the cluster's heat capacity and energy-volume Pearson correlation coefficient were studied, phase diagrams were constructed using a multiple-histogram method, and attempts were made to identify phase transitions to particular cluster structures. Our results show significant differences between the employed volume models, and we discuss all pressure-induced, such as solid-solid-, solid-liquid-, and liquid-gas-like, phase transformations in the present study.cs
dc.language.isoencs
dc.publisherAmerican Chemical Societycs
dc.relation.ispartofseriesJournal of Physical Chemistry Acs
dc.relation.urihttp://doi.org/10.1021/acs.jpca.0c00881cs
dc.rightsCopyright © 2020 American Chemical Societycs
dc.titleFinite systems under pressure: Assessing volume definition models from parallel-tempering Monte Carlo simulationscs
dc.typearticlecs
dc.identifier.doi10.1021/acs.jpca.0c00881
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume124cs
dc.description.issue20cs
dc.description.lastpage4047cs
dc.description.firstpage4036cs
dc.identifier.wos000537424600008


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam