Zobrazit minimální záznam

dc.contributor.authorZjavka, Ladislav
dc.date.accessioned2020-07-16T11:46:29Z
dc.date.available2020-07-16T11:46:29Z
dc.date.issued2020
dc.identifier.citationIET Renewable Power Generation. 2020, vol. 14, issue 8, special issue, p. 1405-1412.cs
dc.identifier.issn1752-1416
dc.identifier.issn1752-1424
dc.identifier.urihttp://hdl.handle.net/10084/139644
dc.description.abstractPrecise daily forecasts of photo-voltaic (PV) power production are necessary for its planning, utilisation and integration into the electrical grid. PV power is conditioned by the current amount of specific solar radiation components. Numerical weather prediction systems are usually run every 6 h and provide only rough local prognoses of cloudiness with a delay. Statistical methods can predict PV power, considering a specific plant situation. Their intra-day models are usually more precise if rely only on the latest data observations and power measurements. Differential polynomial neural network (D-PNN) is a novel neuro-computing technique based on analogies with brain pulse signal processing. D-PNN decomposes the general partial differential equation (PDE), being able to describe the local atmospheric dynamics, into specific sub-PDEs in its nodes. These are converted using adapted procedures of operational calculus to obtain the Laplace images of unknown node functions, which are inverse L-transformed to obtain the originals. D-PNN can select from dozens of input variables to produce applicable sum PDE components which can extend, one by one, its composite models towards the optima. The PDE models are developed with historical spatial data from the estimated optimal numbers of the last days for each 1-9-h inputs-output time-shift to predict clear sky index in the trained time-horizon.cs
dc.language.isoencs
dc.publisherIETcs
dc.relation.ispartofseriesIET Renewable Power Generationcs
dc.relation.urihttp://doi.org/10.1049/iet-rpg.2019.1208cs
dc.rights© The Institution of Engineering and Technologycs
dc.subjectpower engineering computingcs
dc.subjectpartial differential equationscs
dc.subjectphotovoltaic power systemscs
dc.subjectpolynomialscs
dc.subjectweather forecastingcs
dc.subjectfuzzy neural netscs
dc.subjectstatistical analysiscs
dc.subjectsolar radiationcs
dc.subjectsolar powercs
dc.subjectPV power intra-day predictionscs
dc.subjectPDE modelscs
dc.subjectpolynomial networkscs
dc.subjectoperational calculuscs
dc.subjectprecise daily forecastscs
dc.subjectphoto-voltaic power productioncs
dc.subjectelectrical gridcs
dc.subjectspecific solar radiation componentscs
dc.subjectnumerical weather prediction systemscs
dc.subjectspecific plant situationcs
dc.subjectintra-day modelscs
dc.subjectlatest data observationscs
dc.subjectpower measurementscs
dc.subjectdifferential polynomial neural networkcs
dc.subjectD-PNNcs
dc.subjectnovel neuro-computing techniquecs
dc.subjectbrain pulse signal processingcs
dc.subjectgeneral partial differential equationcs
dc.subjectlocal atmospheric dynamicscs
dc.subjectapplicable sum PDE componentscs
dc.subjectcomposite modelscs
dc.subjectspecific sub-PDEcs
dc.titlePV power intra-day predictions using PDE models of polynomial networks based on operational calculuscs
dc.typearticlecs
dc.identifier.doi10.1049/iet-rpg.2019.1208
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume14cs
dc.description.issue8cs
dc.description.lastpage1412cs
dc.description.firstpage1405cs
dc.identifier.wos000540464900019


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam