Zobrazit minimální záznam

dc.contributor.authorHozman, Jiří
dc.contributor.authorTichý, Tomáš
dc.date.accessioned2020-09-25T10:33:45Z
dc.date.available2020-09-25T10:33:45Z
dc.date.issued2020
dc.identifier.citationMathematical Methods in the Applied Sciences. 2020, vol. 43, issue 13, special issue, p. 7726-7746.cs
dc.identifier.issn0170-4214
dc.identifier.issn1099-1476
dc.identifier.urihttp://hdl.handle.net/10084/141820
dc.description.abstractAsian options represent an important subclass of the path-dependent contracts that are identified by payoff depending on the average of the underlying asset prices over the prespecified period of option lifetime. Commonly, this average is observed at discrete dates, and also, early exercise features can be admitted. As a result, analytical pricing formulae are not always available. Therefore, some form of a numerical approximation is essential for efficient option valuation. In this paper, we study a PDE model for pricing discretely observed arithmetic Asian options with fixed as well as floating strike for both European and American exercise features. The pricing equation for such options is similar to the Black-Scholes equation with 1 underlying asset, and the corresponding average appears only in the jump conditions across the sampling dates. The objective of the paper is to present the comprehensive methodological concept that forms and improves the valuation process. We employ a robust numerical procedure based on the discontinuous Galerkin approach arising from the piecewise polynomial generally discontinuous approximations. This technique enables a simple treatment of discrete sampling by incorporation of jump conditions at each monitoring date. Moreover, an American early exercise constraint is directly handled as an additional nonlinear source term in the pricing equation. The proposed solving procedure is accompanied by an empirical study with practical results compared to reference values.cs
dc.language.isoencs
dc.publisherWileycs
dc.relation.ispartofseriesMathematical Methods in the Applied Sciencescs
dc.relation.urihttp://doi.org/10.1002/mma.6160cs
dc.rights© 2020 John Wiley & Sons, Ltd.cs
dc.subjectAmerican-style optionscs
dc.subjectAsian optionscs
dc.subjectdiscontinuous Galerkin methodcs
dc.subjectdiscrete samplingcs
dc.subjectoption pricingcs
dc.subjectpenalty methodcs
dc.titleThe discontinuous Galerkin method for discretely observed Asian optionscs
dc.typearticlecs
dc.identifier.doi10.1002/mma.6160
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume43cs
dc.description.issue13cs
dc.description.lastpage7746cs
dc.description.firstpage7726cs
dc.identifier.wos000549958400018


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam