Zobrazit minimální záznam

dc.contributor.authorShivakoti, Ishwer
dc.contributor.authorRodrigues, Lewlyn L. R.
dc.contributor.authorČep, Robert
dc.contributor.authorPradhan, Premendra Mani
dc.contributor.authorSharma, Ashis
dc.contributor.authorBhoi, Akash Kumar
dc.date.accessioned2020-10-05T10:39:46Z
dc.date.available2020-10-05T10:39:46Z
dc.date.issued2020
dc.identifier.citationMaterials. 2020, vol. 13, issue 14, art. no. 3137.cs
dc.identifier.issn1996-1944
dc.identifier.urihttp://hdl.handle.net/10084/142249
dc.description.abstractThis research presents the parametric effect of machining control variables while turning EN31 alloy steel with a Chemical Vapor deposited (CVD) Ti(C,N) + Al2O3+ TiN coated carbide tool insert. Three machining parameters with four levels considered in this research are feed, revolutions per minute (RPM), and depth of cut (a(p)). The influences of those three factors on material removal rate (MRR), surface roughness (Ra), and cutting force (Fc) were of specific interest in this research. The results showed that turning control variables has a substantial influence on the process responses. Furthermore, the paper demonstrates an adaptive neuro fuzzy inference system (ANFIS) model to predict the process response at various parametric combinations. It was observed that the ANFIS model used for prediction was accurate in predicting the process response at varying parametric combinations. The proposed model presents correlation coefficients of 0.99, 0.98, and 0.964 for MRR, Ra, and Fc, respectively.cs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesMaterialscs
dc.relation.urihttp://doi.org/10.3390/ma13143137cs
dc.rights© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectalloy steelcs
dc.subjectfeedcs
dc.subjectANFIScs
dc.subjectRPMcs
dc.subjectturningcs
dc.titleExperimental investigation and ANFIS-based modelling during machining of EN31 alloy steelcs
dc.typearticlecs
dc.identifier.doi10.3390/ma13143137
dc.rights.accessopenAccesscs
dc.type.versionpublishedVersioncs
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume13cs
dc.description.issue14cs
dc.description.firstpageart. no. 3137cs
dc.identifier.wos000554261600001


Soubory tohoto záznamu

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Kromě případů, kde je uvedeno jinak, licence tohoto záznamu je © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.