Zobrazit minimální záznam

dc.contributor.authorRoy, Swalpa Kumar
dc.contributor.authorChatterjee, Subhrasankar
dc.contributor.authorBhattacharyya, Siddhartha
dc.contributor.authorChaudhuri, Bidyut B.
dc.contributor.authorPlatoš, Jan
dc.date.accessioned2020-10-05T12:53:50Z
dc.date.available2020-10-05T12:53:50Z
dc.date.issued2020
dc.identifier.citationIEEE Transactions on Geoscience and Remote Sensing. 2020, vol. 58, issue 8, p. 5277-5290.cs
dc.identifier.issn0196-2892
dc.identifier.issn1558-0644
dc.identifier.urihttp://hdl.handle.net/10084/142253
dc.description.abstractOf late, convolutional neural networks (CNNs) find great attention in hyperspectral image (HSI) classification since deep CNNs exhibit commendable performance for computer vision-related areas. CNNs have already proved to be very effective feature extractors, especially for the classification of large data sets composed of 2-D images. However, due to the existence of noisy or correlated spectral bands in the spectral domain and nonuniform pixels in the spatial neighborhood, HSI classification results are often degraded and unacceptable. However, the elementary CNN models often find intrinsic representation of pattern directly when employed to explore the HSI in the spectral-spatial domain. In this article, we design an end-to-end spectral-spatial squeeze-and-excitation (SE) residual bag-of-feature (S3EResBoF) learning framework for HSI classification that takes as input raw 3-D image cubes without engineering and builds a codebook representation of transform feature by motivating the feature maps facilitating classification by suppressing useless feature maps based on patterns present in the feature maps. To boost the classification performance and learn the joint spatial-spectral features, every residual block is connected to every other 3-D convolutional layer through an identity mapping followed by an SE block, thereby facilitating the rich gradients through backpropagation. Additionally, we introduce batch normalization on every convolutional layer (ConvBN) to regularize the convergence of the network and scale invariant BoF quantization for the measure of classification.cs
dc.language.isoencs
dc.publisherIEEEcs
dc.relation.ispartofseriesIEEE Transactions on Geoscience and Remote Sensingcs
dc.relation.urihttp://doi.org/10.1109/TGRS.2019.2961681cs
dc.rightsCopyright © 2020, IEEEcs
dc.subjectbag-of-feature (BoF)cs
dc.subjectconvolutional neural networks (CNNs)cs
dc.subjecthyperspectral image (HSI)cs
dc.subjectresidual network (ResNet)cs
dc.titleLightweight spectral-spatial squeeze-and-excitation residual bag-of-features learning for hyperspectral classificationcs
dc.typearticlecs
dc.identifier.doi10.1109/TGRS.2019.2961681
dc.type.statusPeer-reviewedcs
dc.description.sourceWeb of Sciencecs
dc.description.volume58cs
dc.description.issue8cs
dc.description.lastpage5290cs
dc.description.firstpage5277cs
dc.identifier.wos000552371900004


Soubory tohoto záznamu

SouboryVelikostFormátZobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Tento záznam se objevuje v následujících kolekcích

Zobrazit minimální záznam